331 research outputs found
A Method to Constrain the Size of the Protosolar Nebula
Observations indicate that the gaseous circumstellar disks around young stars
vary significantly in size, ranging from tens to thousands of AU. Models of
planet formation depend critically upon the properties of these primordial
disks, yet in general it is impossible to connect an existing planetary system
with an observed disk. We present a method by which we can constrain the size
of our own protosolar nebula using the properties of the small body reservoirs
in the solar system. In standard planet formation theory, after Jupiter and
Saturn formed they scattered a significant number of remnant planetesimals into
highly eccentric orbits. In this paper, we show that if there had been a
massive, extended protoplanetary disk at that time, then the disk would have
excited Kozai oscillations in some of the scattered objects, driving them into
high-inclination (i > 50 deg), low-eccentricity orbits (q > 30 AU). The
dissipation of the gaseous disk would strand a subset of objects in these
high-inclination orbits; orbits that are stable on Gyr time scales. To date,
surveys have not detected any Kuiper Belt Objects with orbits consistent with
this dynamical mechanism. Using these non-detections by the Deep Ecliptic
Survey (DES) and the Palomar Distant Solar System Survey we are able to rule
out an extended gaseous protoplanetary disk (R_D > 80 AU) in our solar system
at the time of Jupiter's formation. Future deep all sky surveys such as the
Large Synoptic Survey Telescope (LSST) will all us to further constrain the
size of the protoplanetary disk.Comment: 10 pages, Accepted to A
The Mutual Orbit, Mass, and Density of Transneptunian Binary Gknhmdm (229762 2007 UK126)
We present high spatial resolution images of the binary transneptunian object Gkn'hmdm (229762 2007 UK126) obtained with the Hubble Space Telescope and with the Keck observatory on Mauna Kea to determine the orbit of G' hG' h, the much smaller and redder satellite. G' h orbits in a prograde sense, on a circular or near-circular orbit with a period of 11.3 days and a semimajor axis of 6000 km. Tidal evolution is expected to be slow, so it is likely that the system formed already in a low-eccentricity configuration, and possibly also with the orbit plane of the satellite in or close to the plane of Gkn'hmdm's equator. From the orbital parameters we can compute the system mass to be 1.4 10(exp 20) kg. Combined with estimates of the size of Gkn'hmdm from thermal observations and stellar occultations, we can estimate the bulk density as about 1 g cm(exp 3). This low density is indicative of an ice-rich composition, unless there is substantial internal porosity. We consider the hypothesis that the composition is not unusually ice-rich compared with larger TNOs and comet nuclei, and instead the porosity is high, suggesting that mid-sized objects in the 400 to 1000 km diameter range mark the transition between small, porous objects and larger objects that have collapsed their internal void space as a result of their much higher internal pressures and temperatures
Plausible home stars of the interstellar object 'Oumuamua found in Gaia DR2
The first detected interstellar object 'Oumuamua that passed within 0.25au of
the Sun on 2017 September 9 was presumably ejected from a stellar system. We
use its newly determined non-Keplerian trajectory together with the
reconstructed Galactic orbits of 7 million stars from Gaia DR2 to identify past
close encounters. Such an "encounter" could reveal the home system from which
'Oumuamua was ejected. The closest encounter, at 0.60pc (0.53-0.67pc, 90%
confidence interval), was with the M2.5 dwarf HIP 3757 at a relative velocity
of 24.7km/s, 1Myr ago. A more distant encounter (1.6pc) but with a lower
encounter (ejection) velocity of 10.7km/s was with the G5 dwarf HD 292249,
3.8Myr ago. Two more stars have encounter distances and velocities intermediate
to these. The encounter parameters are similar across six different
non-gravitational trajectories for 'Oumuamua. Ejection of 'Oumuamua by
scattering from a giant planet in one of the systems is plausible, but requires
a rather unlikely configuration to achieve the high velocities found. A binary
star system is more likely to produce the observed velocities. None of the four
home candidates have published exoplanets or are known to be binaries. Given
that the 7 million stars in Gaia DR2 with 6D phase space information is just a
small fraction of all stars for which we can eventually reconstruct orbits, it
is a priori unlikely that our current search would find 'Oumuamua's home star
system. As 'Oumuamua is expected to pass within 1pc of about 20 stars and brown
dwarfs every Myr, the plausibility of a home system depends also on an
appropriate (low) encounter velocity.Comment: Accepted to The Astronomical Journa
A Brief History of Trans-Neptunian Space
The Edgeworth-Kuiper belt encodes the dynamical history of the outer solar
system. Kuiper belt objects (KBOs) bear witness to coagulation physics, the
evolution of planetary orbits, and external perturbations from the solar
neighborhood. We critically review the present-day belt's observed properties
and the theories designed to explain them. Theories are organized according to
a possible time-line of events. In chronological order, epochs described
include (1) coagulation of KBOs in a dynamically cold disk, (2) formation of
binary KBOs by fragmentary collisions and gravitational captures, (3) stirring
of KBOs by Neptune-mass planets (``oligarchs''), (4) eviction of excess
oligarchs, (5) continued stirring of KBOs by remaining planets whose orbits
circularize by dynamical friction, (6) planetary migration and capture of
Resonant KBOs, (7) creation of the inner Oort cloud by passing stars in an open
stellar cluster, and (8) collisional comminution of the smallest KBOs. Recent
work underscores how small, collisional, primordial planetesimals having low
velocity dispersion permit the rapid assembly of ~5 Neptune-mass oligarchs at
distances of 15-25 AU. We explore the consequences of such a picture. We
propose that Neptune-mass planets whose orbits cross into the Kuiper belt for
up to ~20 Myr help generate the high-perihelion members of the hot Classical
disk and Scattered belt. By contrast, raising perihelia by sweeping secular
resonances during Neptune's migration might fill these reservoirs too
inefficiently when account is made of how little primordial mass might reside
in bodies having sizes of order 100 km. These and other frontier issues in
trans-Neptunian space are discussed quantitatively.Comment: Final proofed version for Protostars and Planets V; some numbers
adjusted by factors of 2; references update
De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey
The Deep Ecliptic Survey (DES) discovered hundreds of Kuiper Belt objects
from 1998-2005. Follow-up observations yielded 304 objects with good dynamical
classifications (Classical, Scattered, Centaur, or 16 mean-motion resonances
with Neptune). The DES search fields are well documented, enabling us to
calculate the probability of detecting objects with particular orbital
parameters and absolute magnitudes at a randomized point in each orbit.
Grouping objects together by dynamical class leads, we estimate the orbital
element distributions (a, e, i) for the largest three classes (Classical, 3:2,
and Scattered) using maximum likelihood. Using H-magnitude as a proxy for the
object size, we fit a power law to the number of objects for 8 classes with at
least 5 detected members (246 objects). The best Classical slope is
alpha=1.02+/-0.01 (observed from 5<=H<=7.2). Six dynamical classes (Scattered
plus 5 resonances) are consistent in slope with the Classicals, though the
absolute number of objects is scaled. The exception to the power law relation
are the Centaurs (non-resonant with perihelia closer than Neptune, and thus
detectable at smaller sizes), with alpha=0.42+/-0.02 (7.5<H<11). This is
consistent with a knee in the H-distribution around H=7.2 as reported elsewhere
(Bernstein et al. 2004, Fraser et al. 2014). Based on the Classical-derived
magnitude distribution, the total number of objects (H<=7) in each class are:
Classical (2100+/-300 objects), Scattered (2800+/-400), 3:2 (570+/-80), 2:1
(400+/-50), 5:2 (270+/-40), 7:4 (69+/-9), 5:3 (60+/-8). The independent
estimate for the number of Centaurs in the same H range is 13+/-5. If instead
all objects are divided by inclination into "Hot" and "Cold" populations,
following Fraser et al. (2014), we find that alphaHot=0.90+/-0.02, while
alphaCold=1.32+/-0.02, in good agreement with that work.Comment: 26 pages emulateapj, 6 figures, 5 tables, accepted by A
- …