61 research outputs found

    Aktivno lužnati kompoziti dobiveni od troske željezne i čelične industrije

    Get PDF
    Slag as a secondary raw material from metallurgy is most often heaped in slag disposal areas without any profit. This paper deals with alkali activated slag from iron and steel production which can be used in the building industry. Products of alkali slag activation fulfill the role of inorganic binders.Kao sekundarna sirovina, troska od metalurškog procesa najčešće se odlaže na deponije bez ikakve financijske dobiti. Ovaj rad se bavi lužnato aktiviranom troskom iz proizvodnje željeza i čelika, koja kao anorgansko vezivo može biti korištena u građevinskoj industriji

    Metal-Insulator Transition in Doped Single-Wall Carbon Nanotubes

    Get PDF
    We find strong evidence for a metal-insulator (MI) transition in macroscopic single wall carbon nanotube conductors. This is revealed by systematic measurements of resistivity and transverse magnetoresistance (MR) in the ranges 1.9-300 K and 0-9 Tesla, as a function of p-type redox doping. Strongly H2SO4-doped samples exhibit small negative MR, and the resistivity is low and only weakly temperature dependent. Stepwise de-doping by annealing in vacuum induces a MI transition. Critical behavior is observed near the transition, with ρ(T) obeying power-law temperature dependence, ρ(T) ∝ T -β. In the insulating regime (high annealing temperatures) the ρ(T) behavior ranges from Mott-like 3-dimensional (3D) variable-range hopping (VRH), ρ(T) ∝ exp[(-T0/T)-1/4], to Coulomb-gap (CGVRH) behavior, ρ(T) ∝ exp[(-T0/T)-1/2]. Concurrently, MR(B) becomes positive for large B, exhibiting a minimum at magnetic field Bmin. The temperature dependence of Bmin can be characterized by Bmin(T) = Bc(1 - T/Tc) for a large number of samples prepared by different methods. Below a sample-dependent crossover temperature Tc, MR(B) is positive for all B. The observed changes in transport properties are explained by the effect of doping on semiconducting SWNTs and tube-tube coupling

    Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes

    Get PDF
    The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity, and Raman spectroscopy. These all give consistent results for the Fermi level downshift (Delta E(F)) induced by doping. We find Delta E(F) approximate to 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as E(F) moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes

    Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes

    Get PDF
    The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity and Raman spectroscopy. These all give consistent results for the Fermi level downshift (δ EF) induced by doping. We find δ EF ≈ 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as EF moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes

    Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties

    Get PDF
    Thick films of single wall carbon nanotubes (SWNT) exhibiting in-plane preferred orientation have been produced by filter deposition from suspension in strong magnetic fields. We characterize the field-induced alignment with x-ray fiber diagrams and polarized Raman scattering, using a model which includes a completely unaligned fraction. We correlate the texture parameters with resistivity and thermal conductivity measured parallel and perpendicular to the alignment direction. Results obtained with 7 and 26 Tesla fields are compared. We find no significant field dependence of the distribution width, while the aligned fraction is slightly greater at the higher field. Anisotropy in both transport properties is modest, with ratios in the range 5–9, consistent with the measured texture parameters assuming a simple model of rigid rod conductors. We suggest that further enhancements in anisotropic properties will require optimizing the filter deposition process rather than larger magnetic fields. We show that both x-ray and Raman data are required for a complete texture analysis of oriented SWNT materials

    Thermoelectric Power of p-Doped Single-Wall Carbon Nanotubes and the Role of Phonon Drag

    Get PDF
    We measured thermoelectric power S of bulk single-wall carbon nanotube (SWNT) materials p-doped with acids. In contrast to oxygen-exposed or degassed samples, S is very small at the lowest temperatures, increases super-linearly above a characteristic and sample-dependent T, and then levels off. We attribute this unusual behavior to 1-D phonon drag, in which the depression of the Fermi energy cuts off electron-phonon scattering at temperatures below a characteristic T0. This idea is supported by a model calculation in which the low temperature behavior of phonon drag is specifically related to the one-dimensional character of the electronic spectrum

    Single Wall Carbon Nanotube Fibers Extruded from Super-Acid Suspensions: Preferred Orientation, Electrical and Thermal Transport

    Get PDF
    Fibers of single wall carbon nanotubes extruded from super-acid suspensions exhibit preferred orientation along their axes. We characterize the alignment by x-ray fiber diagrams and polarized Raman scattering, using a model which allows for a completely unaligned fraction. This fraction ranges from 0.17 to 0.05±0.02 for three fibers extruded under different conditions, with corresponding Gaussian full widths at half-maximum (FWHM) from 64o to 44o±2o. FWHM, aligned fraction, electrical and thermal transport all improve with decreasing extrusion orifice diameter. Resistivity, thermoelectric power and resonant-enhanced Raman scattering indicate that the neat fibers are strongly p-doped; the lowest observed ρ is 0.25mΩcm at 300 K. High temperature annealing increases ρ by more than 1 order of magnitude and restores the Raman resonance associated with low-energy van Hove transitions, without affecting the nanotube alignment

    Analytical solution of 1D lattice gas model with infinite number of multiatom interactions

    Full text link
    We consider a 1D lattice gas model in which the atoms interact via an infinite number of cluster interactions within contiguous atomic chains plus the next nearest neighbor pairwise interaction. All interactions are of arbitrary strength. An analytical expression for the size distribution of atomic chain lengths is obtained in the framework of the canonical ensemble formalism. Application of the exact solution to the problems of self-assembly and self-organization is briefly discussed.Comment: 12 pages, 3 figure
    corecore