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Single Wall Carbon Nanotube Fibers Extruded from Super-Acid
Suspensions: Preferred Orientation, Electrical and Thermal Transport

Abstract
Fibers of single wall carbon nanotubes extruded from super-acid suspensions exhibit preferred orientation
along their axes. We characterize the alignment by x-ray fiber diagrams and polarized Raman scattering, using
a model which allows for a completely unaligned fraction. This fraction ranges from 0.17 to 0.05±0.02 for
three fibers extruded under different conditions, with corresponding Gaussian full widths at half-maximum
(FWHM) from 64o to 44o±2o. FWHM, aligned fraction, electrical and thermal transport all improve with
decreasing extrusion orifice diameter. Resistivity, thermoelectric power and resonant-enhanced Raman
scattering indicate that the neat fibers are strongly p-doped; the lowest observed ρ is 0.25mΩcm at 300 K.
High temperature annealing increases ρ by more than 1 order of magnitude and restores the Raman resonance
associated with low-energy van Hove transitions, without affecting the nanotube alignment.
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Fibers of single wall carbon nanotubes extruded from super-acid suspensions exhibit 

preferred orientation along their axes.  We characterize the alignment by x-ray fiber 

diagrams and polarized Raman scattering, using a model which allows for a completely 

unaligned fraction.   This fraction ranges from 0.17 to 0.05 ± 0.02 for three  fibers 

extruded under different conditions, with corresponding Gaussian full widths at half-

maximum (FWHM) from 64° to 44°  ± 2°.   FWHM, aligned fraction, electrical and 

thermal transport all improve with decreasing extrusion orifice diameter.  Resistivity, 

thermoelectric power  and resonant-enhanced Raman scattering indicate that the neat 

fibers are strongly p-doped; the lowest observed ρ is 0.25mΩcm at 300 K.   High 

temperature annealing increases ρ by more than an order of magnitude and restores the 

Raman resonance associated with low-energy van Hove transitions, without affecting the 

nanotube alignment.   
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I. INTRODUCTION 

 Macroscopic oriented arrays of single wall carbon nanotubes (SWNT)  [1-4]  are 

far more attractive for practical applications than the random tangles of bundled tubes 

typically found in as-grown bulk samples.   In fiber form, such arrays could be the 

starting point for the construction of useful structures which largely maintain  the 

excellent axial properties expected from perfect tubes.   Such fibers produced by the 

HiPco process [5] offer promise for high strength, light weight, thermally and electrically 

conducting structural elements at lower cost than other nanotube forms.   

The mechanical, electrical and thermal properties of such fibers will depend on 

the degree of SWNT alignment induced by fiber synthesis and post-processing.  In this 

paper we study the preferred orientation in fibers spun from purified HiPco SWNT in 

acid suspensions and correlate the results with electrical resistivity and thermal 

conductivity.   The fibers are poorly crystalline so we analyze the diffuse x-ray scattering 

from oriented tubes with only weak spatial correlations to obtain a mosaic FWHM from 

the azimuthal dependence of diffuse intensity summed over an appropriate Q range.  The 

data suggest  that some fraction of the nanotubes are aligned while the rest remain 

randomly oriented [4].  The aligned fraction can be described by an orientation 

distribution function.  The unaligned fraction accounts for poorly-dispersed aggregates, 

very short tubes which don’t orient well when extruded through a large needle, etc.  This 

fraction is represented by a constant independent of azimuth.  The FWHM of the 

orientation distribution function  is accurately and unambiguously obtained from x-ray 

data; these range from 44° to 64° under different extrusion  conditions.  Combined with 
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angle-dependent polarized Raman spectra [4,6], we also get a good estimate for the 

aligned fraction, generally greater than 80% and again dependent on extrusion conditions.    

 Resistivity and  thermopower  measurements show that the neat fibers are heavily 

p-doped, exhibiting low resistivities and metallic temperature dependence above 200 K.  

The depression of the Fermi energy associated with p-doping is also revealed by the loss 

of resonant  Raman scattering intensity,  associated with low-energy interband transitions 

in the 1-D electronic spectrum [7].   In general the correlation between resistivity and 

alignment is excellent.  Annealing in vacuum drives out the dopants, resulting in higher 

resistivity, non-metallic temperature dependence and restoration of resonant-enhanced 

Raman scattering.   Thermal conductivity is also improved by alignment; room 

temperature values range from 5 to 20 W/m-K for samples with the poorest and best 

FWHM and aligned fraction respectively.  

 

II. EXPERIMENTAL DETAILS 

 Fibers were produced from purified HiPco SWNT [5].  The resulting purified 

material contained less than 1 at.% residual metal catalyst.  Purified nanotubes were 

mixed with 100% sulfuric acid at ~110°C for 24+ hours using conventional stirring 

methods in a constant anhydrous environment.   SWNT concentrations of 6 and 8 wt% 

were prepared.    Fibers were then extruded into an ether coagulation bath using a syringe, 

with no drawing applied.   Different diameter fibers were produced by using extrusion 

orifices of different diameters.   A detailed description of the synthesis process can be 

found elsewhere [8]. 
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Here we report texture analysis, electrical and thermal property measurements on 

3 sets of fibers, all produced from HiPco batch 93.  Sample HPR93A was extruded from 

8 wt.% SWNT through a syringe needle with 500 µm orifice;  HPR93B was extruded 

from 6 wt.% through a 125 µm syringe, and  HPR93C was extruded from 6 wt.%  SWNT 

through a 250 µm  syringe.   No mechanical stretching was applied after spinning [9].   

The diameters were  220,  60 and 110 µm respectively, indicating about a factor of two 

decrease with respect to the needle diameter due to collapse of the initial gel state in the 

coagulation bath. 

As shown below, the nanotubes in neat fibers are heavily p-doped by some 

component of the suspending medium, presumably  bisulfate ions [10].   After 

measurement, we annealed neat fibers either in flowing argon at 1100°C for 24 hours or 

in vacuum at 1150°C for 2 hours using a slow temperature ramp, in order to remove the 

dopants.   

Fiber texture was studied by combining diffuse x-ray scattering and polarized 

Raman spectroscopy.  X-ray scattering measurements were performed on a multi-angle 

diffractometer equipped with Cu rotating anode, double-focussing optics, evacuated 

flight path and 2-D wire detector. All samples were measured in transmission for 2 hours. 

For large diameter fibers, a single piece gave enough signal to measure the texture.  For 

small diameter fibers, several pieces were carefully assembled  parallel to each other.  

True background was recorded with no sample and simply subtracted off since absorption 

by the sample was found to be negligible.  Polarized Raman measurements were done in 

VV geometry on a Renishaw Ramanscope 1000 system using 514.4 nm excitation and 2 

µm diameter spot size.   
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Electrical and thermal properties were measured and correlated to the fiber texture.  

Resistivity was measured by a four-probe DC technique with current reversal averaging.  

Voltage probes were about 2-3 mm apart.   For neat fibers we found it necessary to 

sputter gold through a shadow mask to improve the quality of the contacts,  presumably 

because the usual silver epoxies reacted with doping acid residues.    Thermal 

conductivity  κ  was measured from 10 to 300 K using a comparative technique [4].   In 

brief, a known heat flow Q passes through a constantan rod, then the sample, and finally 

a second constantan rod, to a heat sink.    Three differential Type E thermocouples using 

0.00025 inch diameter wires are employed to measure temperature drops across the 

sample and the constantan standards, with small sapphire chips  to electrically isolate the 

differential thermocouple from the highly electrically conducting fiber.  Sample 

conductance is obtained  by averaging the two ratios of temperature drops across the 

sample and either constantan,  then scaled by a dimensional factor  (averaging the two 

ratios accounts approximately for radiation losses  since the one of the two constantans is 

hotter or colder than the sample) and the known κ for constantan.  The accuracy of ρ and 

κ data, estimated as ±  30%,  is limited by errors in sample dimensions.   Sample 

densities were not determined so no corrections  for gross porosity were made. 

 

III. PREFERRED ORIENTATION 

 For crystalline SWNT bundles, or “ropes”, Bragg diffraction peaks from the 2-D 

triangular lattice lie in a plane normal to the rope axis [11].  Information about preferred 

orientation within a  collection of such ropes can thus be obtained from fiber diagrams in 

the range  ~0.3 < Q <  ~1.6 A –1.   Unfortunately, bulk samples and extruded fibers of 
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HiPco material exhibit little or no Bragg intensity relative to carbon arc or pulsed laser 

vaporization material [12].  Annealing improves matters somewhat, and the first 3 orders 

of [HK] reflections emerge as broad humps superposed on an intense diffuse tail, cf. 

Figure 1.  We must therefore include sources of diffuse small-angle scattering in our 

analysis of x-ray fiber diagrams:  isolated tubes, small and poorly crystallized large 

bundles, uncorrelated pores, impurity particles etc.   

The SWNT-related diffuse scattering should in principle follow the Bessel 

function form factor of a cylindrical shell of charge [11],  although this has  not been 

confirmed experimentally.   In HiPco SWNTs the broad diameter distribution smears out 

the Bessel function oscillations and we observe monotonically decreasing intensity with 

increasing Q.   This overlaps with SAXS contrast originating from porosity or nanoscopic 

particles of graphite, metal catalysts, amorphous carbon, graphitic onions etc. and thus 

the SWNT contribution cannot in general be isolated.   On the other hand it is reasonable 

to assume that only the SWNTs contribute to the low-Q   scattering anisotropy. Therefore 

we can obtain reliable distribution widths from x-ray data but we get no information 

pertinent to the aligned fraction of tubes.  In previous studies on nanotube fibers prepared 

from partially crystalline carbon arc-derived SWNTs,  the diffuse scattering was included 

with the sample-independent background and only the weak Bragg intensity was 

analyzed [3].    

X-ray scattering powder profiles  from neat and annealed HPR93A fibers, 

obtained by azimuthal integration of the 2-D data, are shown in Fig.1.   No Bragg peaks 

were detected from the neat fiber.  After vacuum annealing we observe stronger low-Q 

scattering,  2 or 3 weak Bragg peaks near   0.45,  0.75 and 1.1  A-1,  and  the 
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disappearance of the broad peak at   1.6 A-1.   We attribute these changes to removal of 

acid residues and partial reorganization of tubes within bundles.  Although vacuum 

annealing improved the crystallinity of nanotubes to some extent, the main contribution 

to SWNT scattering remains diffuse. 

From the 2-D data sets, we take sectors along the radial Q direction out of 1o 

wedges and plot  their summed intensities vs. azimuthal  angle χ.   Preferred orientation is 

then deduced from the range  0.35 < Q < 0.55 A
-1

.  The results for neat fiber HPR93C 

are shown in Figure 2a). The solid curve is a least squares fit to Gaussians centered near 

χ = 0° and 180° plus a constant (the fiber axis coincides with the 90°-270° axis).   The 

fitted Gaussian FWHMs are  63°,  55° and  45° ± 2°  for neat fibers A, C and B 

respectively, where B was spun from the more dilute suspension (6 wt.%)  through the 

smallest orifice (125 µm).  Lorentzian fits were also performed; these yielded similar 

FWHM’s with slightly better goodness-of-fit for all 3 fibers, but the Gaussian is preferred 

for Raman analysis as described below.  Similar FWHM values were obtained after 

annealing,  while the constant background was reduced for all 3 fibers (not shown).  All 

the results are collected in Table I.  After annealing, the anisotropic diffuse scattering 

from nanotubes becomes stronger relative to the isotropic SAXS, without narrowing the 

orientation distribution.   We believe the primary reason is removal of residual acid, 

which increases the x-ray contrast between SWNT and pores.  This is also suggested by 

the integrated profiles in Fig. 1 where we see that annealing nearly eliminates the 

“amorphous” peak at Q ~ 1.6A
-1

.   
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 In principle, we can deduce texture information from any Q sector since we focus 

on diffuse scattering.  The above choice includes weak Bragg intensity from the (1,0) 

rope reflection at ~ 0.4 A
-1

,  visible after annealing.   One generally does not expect to 

get texture information from Q sectors lying below the first Bragg peak, since it was 

previously believed that the low-Q profile is dominated by SAXS associated with 

porosity [3].  In Fig. 2b)  we demonstrate that this is not the case for the fibers studied 

here, by showing azimuthal data for annealed HPR93C taken from the sector 0.035 < Q < 

0.070 A
-1

.  The fitted 58o FWHM is nearly the same as the value obtained at higher Q.  

Since the scattering bodies are rod-like nanotube bundles at low Q, we assign the  

anisotropic SAXS to  preferred orientation along the fiber axis of these rod-like objects. 

We used Raman spectroscopy to obtain aligned fractions A.  With VV 

polarization measurements taken at many angles Ψ between alignment and polarization 

directions, one can obtain a characteristic distribution width of tube axis orientations 

which in principle is equivalent to the x-ray FWHM [4,6].   Extending the Raman 

analysis  to allow for unaligned tubes leads to unacceptable coupling  between the two fit 

parameters,  especially for Lorentzian distribution function,  so we   adopted the strategy 

of inputting the x-ray FWHM to fit Raman data in a 2-phase model with a single 

adjustable parameter A.  

   Since the fibers are axially symmetric, our distribution function has cylindrical 

symmetry.  We also considered the orientation  dependence of the penetration depth since 

optical absorption in SWNT is anisotropic [13].  This may be described by  a correction 

factor ƒabs ∝ 1/(cosφ +K sinφ) where φ is the angle between polarization vector and 
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nanotube axis,  and K = α⊥ / α where α⊥ and α are the nanotube absorption 

coefficients for polarizations perpendicular and parallel to the tube axis.   It is believed 

that K is between 0 and ¼ [14].   In general, aligned fraction A and FWHM are obtained 

by fitting the deviation from a  ƒabscos4Ψ law.   

Peak intensities of the tangential G2-band at 1590 cm-1 were recorded from 3 

different 2 µm spots to account for inhomogeneity, at each of  7 Ψ values.  Data and fits 

are shown in Fig.3.  Assuming K = 1/8, the aligned fractions for HPR93 A, C and B  are 

0.83, 0.90 and 0.94 respectively.   By bracketing these results with K = 0 and 1/4, we 

estimate the error bar on A as ±0.02.   The most dramatic trend shown by the fits is that  

smaller needle diameters yield larger aligned fractions with narrower distributions.  There 

may also be an effect of SWNT concentration but this is less apparent.  Annealing had no 

significant effect on the fitted values of A or FWHM.  The Raman results are 

summarized in Table I. 

The radial breathing mode (RBM) and G band Raman profiles are quite different 

for neat and annealed fibers, Fig.4.  This is mainly because neat and annealed samples are 

under different resonance conditions.  The neat fibers are heavily p-doped with Fermi 

energies  EF  well below the neutrality condition [14],  thus certain tubes in neat fibers 

lose their resonance enhancement associated with strong interband  absorption.  

Annealing at high temperature de-dopes the nanotubes so their Raman spectra resemble 

those of ordinary HiPco materials [12].  Specifically, using 514.5nm (2.41 eV)  

excitation,  metallic tubes with 0.9 < d < 1.1nm and semiconducting tubes with 1.2 < d < 

1.6nm are in resonance  due to allowed  interband transitions E11
M  ≈  E33

S ≈ 2.41eV.    EF  
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decreases upon doping, valence band singularities become occupied and  some large 

diameter semiconducting tubes and small diameter metallic tubes lose resonance.  For 

example, going from neutral (annealed) to p-doped (neat), in the RBM band we can 

clearly see that the 184 cm-1 component  loses intensity  and the 262 cm-1 component is 

slightly weaker.     Similar resonance-induced modifications occur in the G-band.  

According to previous studies [15], the higher-frequency component at 1590 cm-1 is not 

diameter dependent, while the lower-frequency components are.  The splitting between 

these components is inversely proportional to d2 , and metallic tubes have larger 

linewidths than semiconducting ones.  In our case, the G band for the neat fiber is 

narrower than that of the annealed one, consistent with small-diameter metallic tubes 

losing  resonance enhancement when EF is depressed.   

Structural analysis combining x-ray and Raman scattering unambiguously shows 

that smaller orifice diameter generally results in fibers with better alignment.   An 

interesting question is whether this texture results from “quenching” a nematic liquid 

crystal phase or from partial alignment due to anisotropic flow.  Our structural analysis  

seems to suggest the latter for the fibers studied herein.  Somewhat larger widths were 

obtained for carbon arc fibers extruded from PVA/water suspensions [3].  Further 

improvements may be expected by stretching in the gel state [9].   Compared to magnetic 

field aligned films [4],  anisotropic flow without mechanical shear results in larger 

aligned fractions and slightly broader distribution widths.   
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IV.  ELECTRICAL PROPERTIES 
 

In this section we address the consequences of extensional flow-induced 

alignment and the effect of bisulfate doping on the electrical resisitivity ρ of HPR93 

fibers.   We measured A, B and C fibers in the neat (as-grown) and annealed states. Fiber 

A was annealed in flowing argon at 1100°C for 24 hours; fibers B and C were annealed 

in vacuum at 1150°C for two hours. 

In the neat state, all 3 fibers exhibit low resistance with metallic temperature 

dependence above 200 K, as shown in Figure 5.  There is a direct correlation between 

low resistivity  and nanotube alignment.  For the best-aligned HPR93B,  ρ(300 K) = 0.24 

mΩcm, about a factor 10 less than graphite in-plane.  For all 3 fibers, both the small 

values and the flat temperature dependence are due to the strong redox doping effect of 

bisulfate from the acid suspension [10].   Thermopower measurements on raw  fibers 

suggest that the Fermi level is shifted by 0.55 eV into the valence band [14] so that the 

semiconducting tubes are degenerately doped and thus contribute to electrical 

conductivity.  We also suspect that doping strongly “improves”  the interparticle (e.g. 

rope-rope) contacts, suppressing the low T upturn in resistivity.  Similar behavior is 

observed in alkali-doped buckypaper samples [16].   

The non-divergent low T behavior in the neat state can be ascribed to interparticle 

tunneling induced by thermal fluctuations [17]: 

( ) 







+

−∝
s

t
t TT

Tρln
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where the fluctuations become large enough at  T = Tt   to raise the electronic energies to 

the top of the barrier,  and the ratio Tt/Ts determines the tunneling probability in the 

absence of fluctuations and thus the low-T resistivity.   This model was developed to 

describe conduction in disordered materials in which the metallic regions (e.g.  bisulfate 

doped  bundles) are large enough that the electrostatic charging energy is much smaller 

than  kBT.  Under these conditions, tunneling can occur between metallic states of the 

same energy on opposite sides of the barrier without phonon assisted hopping,  provided 

that the wavefunctions overlap across the barrier.  At very low temperature this 

conduction mechanism becomes identical to temperature-independent elastic tunneling. 

As a result, the  slope of the resitivity at low T approaches zero and the resistivity will 

saturate to a constant value which depends on the characteristic of the barriers formed 

between bundles.  Fitting the low temperature parts of  Fig. 5 data  to this model, we 

estimate Tt ≈ 8-11 K and Ts ≈ 15-20 K for all 3 samples. Above ~200 K the resistivity of 

neat fibers increases with increasing T, which we attribute to electron-phonon scattering 

[18].  This can be described by a linear term  added to ρt , and the total resistivity can be 

fit very well in the whole temperature range [19].     

The effect of annealing on  resistivity is shown in Figure 6.  We annealed a 

sample of  HPR93B at different temperatures,  keeping the annealing time approximately 

constant. Generally, annealing removes dopant molecules and the fibers become more 

resistive with higher annealing temperatures.  This effect is more pronounced at low T.  

The first   250¡C  anneal has little effect, while there is  a notable change after the  

350¡C anneal.  This together with the x-ray results suggest that bisulfate anions are 
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incorporated into the bundles and desorb with an activation energy ~ 250-350 kBT.  Neat 

and annealed values of ρ(300 K) are included in Table I. 

The temperature dependence of the resistivity for annealed fibers, shown in 

Figure 7,  differs greatly from that of the neat fibers. All 3 annealed samples show large 

increases in resistivity at all T, in addition to notably steeper non-metallic temperature 

dependence.  Note that for HPR93B, dρ/dT is still becoming more negative with 

decreasing T  at our lower limit of 1.3 K, unlike the non-divergent behavior of neat fibers.   

These results suggest that removing dopant molecules leads to localization of charge 

carriers within the ropes.  Another possibility is that annealing changes some property of 

interparticle contacts such that carriers can now be trapped there as well.    At this point 

there is little to be learned from detailed fits incorporating additional low-T transport 

mechanisms [19].  Further studies are underway to clarify the nature of the disorder in 

these inhomogeneous conductors. 

 
V. THERMAL CONDUCTIVITY 

We measured thermal conductivity of HPR93 fibers from 15K to 300K; the 

results are shown in Figure 8.  κ is dominated by phonons  so it increases smoothly with 

temperature as more vibrational modes become occupied.  The HPR93A fibers were 

measured in the neat and annealed states; both show a room temperature thermal 

conductivity of about 5 W/m-K and have almost identical temperature dependences.   We 

conclude that the annealing process doesn't affect the thermal properties significantly, in 

strong contrast to the electrical resistivity.    

   Fibers HPR93B and C were measured in the annealed state. They show  

significantly higher κ values than  HPR93A.  This can be attributed to the improved 
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nanotube alignment within the fibers.  κ is improved significantly by reducing the syringe 

diameter from 500 µm (HPR93A) to 250 µm (HPR93C), while further reduction to 125 

µm  (HPR93B) yields no additional improvement.  Fibers B and C have  very similar 

temperature dependences up to about 200K.  Their room temperature values are 19 and 

17  W/m-K  respectively, and are included in Table I.    These are based on measured 

macroscopic dimensions and do not account for gross voids or porosity.   

The fiber κ values are very low compared to κ of graphite parallel to the layers.  It 

is likely that the fibers are not fully dense, so the effective cross sectional area is smaller 

then the measured value and κ is underestimated.  This may account for a factor 2-5 from 

previous experience.  Also, the tubes are not perfectly aligned;  the largest  κ, 19 W/m-K 

for HPR93B with a mosaic FWHM of   43o, is about half the value for the best H-aligned 

buckypaper,  48 W/m-K with FWHM = 33o  [4] (all values uncorrected for density).    

The most important reason for the rather low fiber κ’s achieved thus far could be the 

aforementioned thermal barriers between bundles etc. which would reduce the mean free 

path for phonon scattering.  

 
VI. CONCLUSIONS 

We have shown that extrusion of SWNT suspensions through an orifice produces 

a moderate degree of preferred alignment along the fiber axis without applying any 

tensile force.  The combination of  diffuse (small-angle) x-ray and polarized Raman 

scattering provides accurate values for the distribution width and aligned fraction in these 

poorly crystalline materials.  In general, the smaller the orifice the better the alignment.  

Aligned fractions of our HiPco fibers generally exceed 80% while the FWHM’s increase 
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from 44° to 64° as the needle orifice diameter increases from 125 µm to 500 µm.  Results 

of this structure analysis are being used to optimize the fiber extrusion process. 

Electrical property measurements show that neat fibers are heavily p-doped, 

which is also confirmed by Raman scattering.  Neat fibers exhibit low resistance with 

metallic temperature dependence above 200K,  the better-aligned fibers exhibiting lower 

resistivity.  Annealed fibers show an order of magnitude higher resistance with non-

metallic temperature dependence.  Phonon thermal conductivity is also enhanced by 

alignment but is unaffected by annealing. 

The macroscopic alignment  probably results from a combination of local 

ordering in suspension (as observed from their birefringent and rheological behavior 

[8,20]) and flow-induced reorientation of these ordered domains during extrusion.   

HiPco fibers have also been extruded from SDS/water suspensions into a bath of aqueous 

PVA (needle orifice unspecified), resulting in the same 45o Gaussian x-ray FWHM as 

our best acid-based fiber [21].   Curiously, similar suspensions of carbon arc tubes yield 

only  ~75o FWHM [9], suggesting that the nature of the suspension for a given surfactant 

differs for different types of  SWNT.   These authors also found that mechanical 

stretching after extrusion reduces the FWHM and increases the modulus [9,20].  Further 

improvements in fiber alignment and properties would be facilitated by a more complete 

understanding of the nanotube suspensions.  
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TABLE 1 

 HPR93A HPR93C HPR93B 

Concentration 8 wt.% 6 wt.% 6 wt.% 

Exrusion orifice 

diameter (µm) 

500 250 125 

 Neat Annealed Neat Annealed Neat Annealed 

FWHM (deg.) 

(from x-ray) 

63 64 55 54 45 43 

A (±0.02) 

(from Raman) 

0.83 0.86 0.90 0.92 0.94 0.95 

ρ(300K)(mΩcm) 0.64 8.10 0.51 5.51 0.25 2.62 

κ(300K)(W/mK) 5.0 5.0    19  17 
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TABLE CAPTION 

Table 1. Summary of the synthesis parameters, texture analysis fit parameters and room 

temperature electrical resistivities and thermal conductivities for neat and annealed HiPco 

fibers. FWHM is the Gaussian distribution width of  SWNT axes with respect to the fiber 

axis, determined from x-ray scatteriong.   A is the aligned fraction, determined from 

Raman using the FWHM from x-ray as an input. 
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FIGURE CAPTIONS 

Fig.1. Wide-angle x-ray scattering from neat and annealed fiber HPR93A.  Samples are 

in transmission geometry.  Powder profiles are obtained by azimuthal integration of the 

2D data. 

Fig. 2. Background-subtracted X-ray counts, summed over different Q intervals every 1° 

in χ.  Data are the symbols; fits to two Gaussians plus a constant are the smooth curves. a) 

neat HPR93C, 0.35 < Q < 0.55A-1 centered at the (1,0) rope Bragg peak which is not 

visible in the data; b) annealed HPR93C,  0.035 < Q < 0.070A-1  in the purely diffuse 

regime.  Gaussian FWHM’s are nearly equal, 55 and 58o respectively,  while the 

unoriented “background” is larger at low Q.   

Fig. 3.  Angle-dependent polarized Raman data (open circles) and fits (solid curves).  A 

two-parameter model was used, with one (FWHM) fixed at the value determined from  

x-rays.  Note the dramatic increase in aligned fraction (decreasing intensity at Ψ = π/2)  in 

the sequence A, C, B for the 3 samples.    

Fig. 4.  Raman spectra of neat and annealed fiber HPR93B, showing the effect of  

p-doping on the resonant enhancement behavior of both RBM and G bands in the neat 

fiber. 

Fig. 5. 4-point resistivity vs. temperature for the 3 neat fibers.  ρ decreases at all T as 

alignment improves.  Non-metallic behavior at low T levels off as T → 0 (non-divergent 

behavior) while metallic behavior is observed above 200K. 

Fig. 6.  Effect of vacuum annealing on ρ(T) for HPR93B; note log-log scale.  ρ increases 

as the bisulfate p-dopants are removed, especially at very low T (factor ~500 at 1.3K).  

Fig. 7.  Temperature dependent resistivity of all 3 fibers after 1150o C anneal.  High T 

 30 



 

metallic behavior is lost, and the slope dρ/dT continues to increase as T → 0 (divergent 

behavior). 

Fig. 8.  Thermal conductivity κ vs. temperature of the 3 fibers, measured using the 

comparator method. 
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