6,092 research outputs found
Quasiclassical approach to the spin-Hall effect in the two-dimensional electron gas
We study the spin-charge coupled transport in a two-dimensional electron
system using the method of quasiclassical (-integrated) Green's functions.
In particular we derive the Eilenberger equation in the presence of a generic
spin-orbit field. The method allows us to study spin and charge transport from
ballistic to diffusive regimes and continuity equations for spin and charge are
automatically incorporated. In the clean limit we establish the connection
between the spin-Hall conductivity and the Berry phase in momentum space. For
finite systems we solve the Eilenberger equation numerically for the special
case of the Rashba spin-orbit coupling and a two-terminal geometry. In
particular, we calculate explicitly the spin-Hall induced spin polarization in
the corners, predicted by Mishchenko et al. [13]. Furthermore we find universal
spin currents in the short-time dynamics after switching on the voltage across
the sample, and calculate the corresponding spin-Hall polarization at the
edges. Where available, we find perfect agreement with analytical results.Comment: 9 pages, 6 figure
One-dimensional conduction in Charge-Density Wave nanowires
We report a systematic study of the transport properties of coupled
one-dimensional metallic chains as a function of the number of parallel chains.
When the number of parallel chains is less than 2000, the transport properties
show power-law behavior on temperature and voltage, characteristic for
one-dimensional systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Spatially resolved microwave pulsations of a flare loop
A microwave burst with quasi-periodic pulsations was studied with high spatial resolution using observations with
the Nobeyama Radioheliograph (NoRH). We found that the time profiles of the microwave emission at 17 and 34 GHz exhibit
quasi-periodic (with two well defined periods P 1 = 14–17 s and P 2 = 8–11 s) variations of the intensity at different parts of an observed flaring loop. Detailed Fourier analysis shows the P 1 spectral component to be dominant at the top, while the P 2 one near the feet of the loop. The 14–17 s pulsations are synchronous at the top and in both legs of the loop. The 8–11 s pulsations at the legs are well correlated with each other but the correlation is not so obvious with the pulsations at the loop top. For this P 2
spectral component, a definite phase shift, P 2 /4 ≈ 2.2 s, between pulsations in the northern leg and loop top parts of the loop have been found. The length of the flaring loop is estimated as L = 25 Mm (≈34 ) and its average width at half intensity at 34 GHz as about 6 Mm (≈8 ). Microwave diagnostics shows the loop to be filled with a dense plasma with the number density n 0 ≈ 10 11 cm −3, penetrated by the magnetic field changing from B 0 ≈ 100 G near the loop top up to B 0 ≈ 200 G near the north footpoint. A comparative analysis of different MHD modes of the loop demonstrates the possibility of the simultaneous existence of two modes of oscillations in the loop: the global sausage mode, with the period P 1 = 14–17 s and the nodes at the footpoints, and a higher harmonics mode (possibly with the radial wave number l > 1), with P 2 = 8–11 s
Energy dependence of current noise in superconducting/normal metal junctions
Interference of electronic waves undergoing Andreev reflection in diffusive
conductors determines the energy profile of the conductance on the scale of the
Thouless energy. A similar dependence exists in the current noise, but its
behavior is known only in few limiting cases. We consider a metallic diffusive
wire connected to a superconducting reservoir through an interface
characterized by an arbitrary distribution of channel transparencies. Within
the quasiclassical theory for current fluctuations we provide a general
expression for the energy dependence of the current noise.Comment: 5 pages, 1 Figur
Chirality sensitive effect on surface states in chiral p-wave superconductors
We study the local density of states at the surface of a chiral p-wave
superconductor in the presence of a weak magnetic field. As a result, the
formation of low-energy Andreev bound states is either suppressed or enhanced
by an applied magnetic field, depending on its orientation with respect to the
chirality of the p-wave superconductor. Similarly, an Abrikosov vortex, which
is situated not too far from the surface, leads to a zero-energy peak of the
density of states, if its chirality is the same as that of the superconductor,
and to a gap structure for the opposite case. We explain the underlying
principle of this effect and propose a chirality sensitive test on
unconventional superconductors.Comment: 4 pages, 2 figure
A Discrete Version of the Inverse Scattering Problem and the J-matrix Method
The problem of the Hamiltonian matrix in the oscillator and Laguerre basis
construction from the S-matrix is treated in the context of the algebraic
analogue of the Marchenko method.Comment: 11 pages. The Laguerre basis case is adde
- …