6,557 research outputs found

    Excitonic Mott transition in double quantum wells

    Full text link
    We consider an electron-hole system in double quantum wells theoretically. We demonstrate that there is a temperature interval over which an abrupt jump in the value of the ionization degree occurs with an increase of the carrier density or temperature. The opposite effect - the collapse of the ionized electron-hole plasma into an insulating exciton system - should occur at lower densities. In addition, we predict that under certain conditions there will be a sharp decrease of the ionization degree with increasing temperature - the anomalous Mott transition. We discuss how these effects could be observed experimentally.Comment: 6 pages, 4 figure

    First analytic correction beyond PFA for the electromagnetic field in sphere-plane geometry

    Full text link
    We consider the vacuum energy for a configuration of a sphere in front of a plane, both obeying conductor boundary condition, at small separation. For the separation becoming small we derive the first next-to-leading order of the asymptotic expansion in the separation-to-radius ratio \ep. This correction is of order \ep. In opposite to the scalar cases it contains also contributions proportional to logarithms in first and second order, \ep \ln \ep and \ep (\ln \ep)^2. We compare this result with the available findings of numerical and experimental approaches.Comment: 20 pages, 1 figur

    The Running BFKL: Resolution of Caldwell's Puzzle

    Get PDF
    The HERA data on the proton structure function, F2(x,Q2)F_2(x,Q^2), at very small xx and Q2Q^2 show the dramatic departure of the logarithmic slope, F2/logQ2\partial F_2/\partial\log Q^2, from theoretical predictions based on the DGLAP evolution. We show that the running BFKL approach provides the quantitative explanation for the observed xx and/or Q2Q^2 -dependence of F2/logQ2\partial F_2/\partial\log Q^2.Comment: 7 pages, Latex, 4 Figures, P

    Breaking of k_\perp-factorization for Single Jet Production off Nuclei

    Full text link
    The linear k_\perp-factorization is part and parcel of the pQCD description of high energy hard processes off free nucleons. In the case of heavy nuclear targets the very concept of nuclear parton density becomes ill-defined as exemplified by the recent derivation [2] of nonlinear nuclear k_\perp-factorization for forward dijet production in DIS off nuclei. Here we report a derivation of the related breaking of k_\perp-factorization for single-jet processes. We present a general formalism and apply it to several cases of practical interest: open charm and quark and gluon jet production in the central to beam fragmentation region of \gamma^*p,\gamma^*A, pp and pA collisions. We show how the pattern of k_\perp-factorization breaking and the nature and number of exchanged nuclear pomerons do change within the phase space of produced quark and gluon jets. As an application of the nonlinear k_\perp-factorization we discuss the Cronin effect. Our results are also applicable to the p_\perp-dependence of the Landau-Pomeranchuk-Migdal effect for, and nuclear quenching of, jets produced in the proton hemisphere of pA collisions.Comment: 55 pages, 9 eps figures, presentation shortened, a number of typos removed, to appear in Phys. Rev.

    Evolution of high-mass diffraction from the light quark valence component of the pomeron

    Get PDF
    We analyze the contribution from excitation of the (qqˉ)(ffˉ),(qqˉ)g1...gn(ffˉ)(q\bar q)(f\bar f),(q\bar q)g_1...g_n(f\bar f) Fock states of the photon to high mass diffraction in DIS. We show that the large Q2Q^2 behavior of this contribution can be described by the DLLA evolution from the non-perturbative ffˉf\bar f valence state of the pomeron. Although of higher order in pQCD, the new contribution to high-mass diffraction is comparable to that from the excitation of the qqˉgq\bar q g Fock state of the photon.Comment: 12 pages, 2 figures, the oublished version. The slight numerical errors corrected, all conclusions are retaine

    Casimir force for a sphere in front of a plane beyond Proximity Force Approximation

    Full text link
    For the configuration of a sphere in front of a plane we calculate the first two terms of the asymptotic expansion for small separation of the Casimir force. We consider both Dirichlet and Neumann boundary conditions.Comment: 11 page

    Quantum Monte Carlo study of static potential in graphene

    Get PDF
    In this paper the interaction potential between static charges in suspended graphene is studied within the quantum Monte Carlo approach. We calculated the dielectric permittivity of suspended graphene for the set of temperatures and extrapolated our results to zero temperature. The dielectric permittivity at zero temperature has the following properties. At zero distance ϵ=2.24±0.02\epsilon=2.24\pm0.02. Then it rises and at a large distance the dielectric permittivity reaches the plateau ϵ4.20±0.66\epsilon\simeq4.20\pm0.66. The results obtained in this paper allow to draw a conclusion that full account of many-body effects in the dielectric permittivity of suspended graphene gives ϵ\epsilon very close to the one-loop results. Contrary to the one-loop result, the two-loop prediction for the dielectric permittivity deviates from our result. So, one can expect large higher order corrections to the two-loop prediction for the dielectric permittivity of suspended graphene.Comment: 6 pages, 2 figure
    corecore