266 research outputs found

    Double-exchange model: phase separation versus canted spins

    Full text link
    We study the competition between different possible ground states of the double-exchange model with strong ferromagnetic exchange interaction between itinerant electrons and local spins. Both for classical and quantum treatment of the local spins the homogeneous canted state is shown to be unstable against a phase separation. The conditions for the phase separation into the mixture of the antiferromagnetic and ferromagnetic/canted states are given. We also discuss another possible realization of the phase-separated state: ferromagnetic polarons embedded into an antiferromagnetic surrounding. The general picture of a percolated state, which emerges from these considerations, is discussed and compared with results of recent experiments on doped manganaties.Comment: 10 pages, revtex, modified text and 2 new figure

    Dimerization-induced enhancement of the spin gap in the quarter-filled two-leg rectangular ladder

    Get PDF
    We report density-matrix renormalization group calculations of spin gaps in the quarter-filled correlated two-leg rectangular ladder with bond-dimerization along the legs of the ladder. In the small rung-coupling region, dimerization along the leg bonds can lead to large enhancement of the spin gap. Electron-electron interactions further enhance the spin gap, which is nonzero for all values of the rung electron hopping and for arbitrarily small bond-dimerization. Very large spin gaps, as are found experimentally in quarter-filled band organic charge-transfer solids with coupled pairs of quasi-one-dimensional stacks, however, occur within the model only for large dimerization and rung electron hopping that are nearly equal to the hopping along the legs. Coexistence of charge order and spin gap is also possible within the model for not too large intersite Coulomb interaction

    Pinning of magnetic domain walls in multiferroics

    Full text link
    The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectric domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.Comment: 4 pages, 2 figure

    Comprehensive aerodynamic and dynamic study of independence of ukraine monument

    Get PDF
    Розглянуто результати комплексних досліджень вирішення інженерної проблеми створення висотного монумента колонного типу в Києві, динамічних досліджень моделі в масштабі 1:25 та аеродинамічних досліджень великомасштабної моделі (1:8) в аеродинамічній трубі ТАД-2 Національного авіаційного університету. Наведено процедуру визначення на натурному об’єкті реальних динамічних характеристик та забезпечення ефективності демпфіруванняРассмотрены результаты комплексных исследований решения инженерной задачи создания высотного монумента колонного типа в Киеве, динамических исследований модели в масштабе 1:25 и аэродинамических испытаний крупномасштабной (1:8) модели в аэродинамической трубе ТАД-2 Национального авиационного университета. Приведена процедура определения на натурном объекте реальных динамических характеристик и обеспечения эффективности демпфированияComprehensive approach for solution the engineering problems o f creation the high-rise extended pillartype Monument in Kiyv is described. The results o f dynamic tests o f 1:25 scale model and aerodynamictests o f 1:8 scale model o f the Monument in TAD-2 wind tunnel are given. The procedures fordetermination o f actual dynamic characteristics and assurance the efficiency o f damping on the siteare describe

    Ordering in Two-Dimensional Ising Models with Competing Interactions

    Get PDF
    We study the 2D Ising model on a square lattice with additional non-equal diagonal next-nearest neighbor interactions. The cases of classical and quantum (transverse) models are considered. Possible phases and their locations in the space of three Ising couplings are analyzed. In particular, incommensurate phases occurring only at non-equal diagonal couplings, are predicted. We also analyze a spin-pseudospin model comprised of the quantum Ising model coupled to XY spin chains in a particular region of interactions, corresponding to the Ising sector's super-antiferromagnetic (SAF) ground state. The spin-SAF transition in the coupled Ising-XY model into a phase with co-existent SAF Ising (pseudospin) long-range order and a spin gap is considered. Along with destruction of the quantum critical point of the Ising sector, the phase digram of the Ising-XY model can also demonstrate a re-entrance of the spin-SAF phase. A detailed study of the latter is presented. The mechanism of the re-entrance, due to interplay of interactions in the coupled model, and the conditions of its appearance are established. Applications of the spin-SAF theory for the transition in the quarter-filled ladder compound NaV2O5 are discussed.Comment: Minor revisions and refs. added; published version of the invited paper in a special issue of "Low Temp. Physics

    Density of Neutral Solitons in Weakly Disordered Peierls Chains

    Get PDF
    We study the effects of weak off-diagonal disorder on Peierls systems with a doubly degenerate ground state. We show that for these systems disorder in the electron hopping amplitudes induces a finite density of solitons in the minimal-energy lattice configuration of a single chain. These disorder-induced dimerization kinks are neutral and have spin 1/2. Using a continuum model for the Peierls chain and treating the lattice classically, we analytically calculate the average free energy and density of kinks. We compare these results to numerical calculations for a discrete model and discuss the implications of the kinks for the optical and magnetic properties of the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 5 Postscript figures, to appear in Phys. Rev.

    Critical temperature and density of spin-flips in the anisotropic random field Ising model

    Get PDF
    We present analytical results for the strongly anisotropic random field Ising model, consisting of weakly interacting spin chains. We combine the mean-field treatment of interchain interactions with an analytical calculation of the average chain free energy (``chain mean-field'' approach). The free energy is found using a mapping on a Brownian motion model. We calculate the order parameter and give expressions for the critical random magnetic field strength below which the ground state exhibits long range order and for the critical temperature as a function of the random magnetic field strength. In the limit of vanishing interchain interactions, we obtain corrections to the zero-temperature estimate by Imry and Ma [Phys. Rev. Lett. 35, 1399 (1975)] of the ground state density of domain walls (spin-flips) in the one-dimensional random field Ising model. One of the problems to which our model has direct relevance is the lattice dimerization in disordered quasi-one-dimensional Peierls materials, such as the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 4 postscript figures, to appear in Phys. Rev.

    Planar spin exchange in LiNiO_2

    Full text link
    We study the planar spin exchange couplings in LiNiO2 using a perturbative approach. We show that the inclusion of the trigonal crystal field splitting at the Oxygen sites leads to the appearance of antiferromagnetic exchange integrals in deviation from the Goodenough-Kanamori-Anderson rules for this 90 degree bond. That gives a microscopic foundation for the recently observed coexistence of ferromagnetic and antiferromagnetic couplings in the orbitally-frustrated state of LiNiO2. (F. Reynaud et al, Phys. Rev. Lett. 86, 3638 (2001))Comment: latex, revtex4, 6 pages, 3 figure
    corecore