49,331 research outputs found

    Flight-Measured Aerodynamic Loads on a 0.92 Aspect Ratio Lifting Surface

    Get PDF
    Ventral fin loads, expressed as normal force coefficients, bending moment coefficients, and torque coefficients, were measured during flight tests of a YF-12A airplane. Because of the proximity of the ventral fin to the ailerons, the aerodynamic loads presented were the result of both sideslip loads and aileron crossflow loads. Aerodynamic data obtained from strain gage loads instrumentation and some flight pressure measurements are presented for several Mach numbers ranging from 0.70 to 2.00. Selected wind tunnel data and results of linear theoretical aerodynamic calculations are presented for comparison

    Exploiting the synergy between carboplatin and ABT-737 in the treatment of ovarian carcinomas

    Get PDF
    Platinum drug-resistance in ovarian cancers is a major factor contributing to chemotherapeutic resistance of recurrent disease. Members of the Bcl-2 family such as the anti-apoptotic protein Bcl-XL have been shown to play a role in this resistance. Consequently, concurrent inhibition of Bcl-XL in combination with standard chemotherapy may improve treatment outcomes for ovarian cancer patients. Here, we develop a mathematical model to investigate the potential of combination therapy with ABT-737, a small molecule inhibitor of Bcl-XL, and carboplatin, a platinum-based drug, on a simulated tumor xenograft. The model is calibrated against in vivo\ud experimental data, wherein tumor xenografts were established in mice and treated with ABT-737 and carboplatin on a fixed periodic schedule, alone or in combination, and tumor sizes recorded regularly. We show that the validated model can be used to predict the minimum drug load that will achieve a predetermined level of tumor growth inhibition, thereby maximizing the synergy between the two drugs. Our simulations suggest that the time of infusion of each carboplatin dose is a critical parameter, with an 8-hour infusion of carboplatin administered each week combined with a daily bolus dose of ABT-737 predicted to minimize residual disease. We also investigate the potential of ABT-737 co-therapy with carboplatin to prevent or delay the onset of carboplatin-resistance under two scenarios. When resistance is acquired as a result of aberrant DNA-damage repair in cells treated with carboplatin, the model is used to identify drug delivery schedules that induce tumor remission with even low doses of combination therapy. When resistance is intrinsic, due to a pre-existing cohort of resistant cells, tumor remission is no longer feasible, but our model can be used to identify dosing strategies that extend disease-free survival periods. These results underscore the potential of our model to accelerate the development of novel therapeutics such as ABT-737, by predicting optimal treatment strategies when these drugs are given in combination with currently approved cancer medications

    A Comparison and Strategy of Semantic Segmentation on Remote Sensing Images

    Full text link
    In recent years, with the development of aerospace technology, we use more and more images captured by satellites to obtain information. But a large number of useless raw images, limited data storage resource and poor transmission capability on satellites hinder our use of valuable images. Therefore, it is necessary to deploy an on-orbit semantic segmentation model to filter out useless images before data transmission. In this paper, we present a detailed comparison on the recent deep learning models. Considering the computing environment of satellites, we compare methods from accuracy, parameters and resource consumption on the same public dataset. And we also analyze the relation between them. Based on experimental results, we further propose a viable on-orbit semantic segmentation strategy. It will be deployed on the TianZhi-2 satellite which supports deep learning methods and will be lunched soon.Comment: 8 pages, 3 figures, ICNC-FSKD 201

    Energy losses of fast heavy-ion projectiles in dense hydrogen plasmas

    Full text link
    It has been recently shown that the Bethe-Larkin formula for the energy losses of fast heavy-ion projectiles in dense hydrogen plasmas is corrected by the electron-ion correlations [Phys. Rev. Lett. \textbf{101}, 075002 (2008)]. We report numerical estimates of this correction based on the values of gei(0)g_{ei}(0) obtained by numerical simulations in [Phys. Rev. E \textbf{61}, 3470 (2000)]. We also extend this result to the case of projectiles with dicluster charge distribution. We show that the experimental visibility of the electron-ion correlation correction is enhanced in the case of dicluster projectiles with randomly orientated charge centers. Although we consider here the hydrogen plasmas to make the effect physically more clear, the generalization to multispecies plasmas is straightforward.Comment: 5 pages, 1 figure. International Conference on Strongly Coupled Coulomb Systems 2008, Camerino (Italy). To appear in J. Phys.

    On the stability of bow shocks generated by red supergiants: the case of IRC-10414

    Full text link
    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC-10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of two, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best fit model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC-10414 are ≈\approx50 km s−1{\rm km} \, {\rm s}^{-1} and ≈\approx10−610^{-6} M⊙ yr−1M_\odot \, {\rm yr}^{-1}, respectively, and that the number density of the local ISM is ≈\approx3 cm−3{\rm cm}^{-3}. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are ≈\approx15−-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC-10414 must be photoionized.Comment: 5 pages, 5 figures. Accepted for publication in MNRAS Letter

    Quantum critical fluctuations in disordered d-wave superconductors

    Full text link
    Quasiparticles in the cuprates appear to be subject to anomalously strong inelastic damping mechanisms. To explain the phenomenon, Sachdev and collaborators recently proposed to couple the system to a critically fluctuating order parameter mode of either id_{xy}- or is-symmetry. Motivated by the observation that the energies relevant for the dynamics of this mode are comparable to the scattering rate induced by even moderate impurity concentrations, we here generalize the approach to the presence of static disorder. In the id-case, we find that the coupling to disorder renders the order parameter dynamics diffusive but otherwise leaves much of the phenomenology observed in the clean case intact. In contrast, the interplay of impurity scattering and order parameter fluctuations of is-symmetry entails the formation of a secondary superconductor transition, with a critical temperature exponentially sensitive to the disorder concentration.Comment: 4 pages, 2 figures include
    • …
    corecore