29,348 research outputs found

    Vortex lattice stability and phase coherence in three-dimensional rapidly rotating Bose condensates

    Full text link
    We establish the general equations of motion for the modes of a vortex lattice in a rapidly rotating Bose-Einstein condensate in three dimensions, taking into account the elastic energy of the lattice and the vortex line bending energy. As in two dimensions, the vortex lattice supports Tkachenko and gapped sound modes. In contrast, in three dimensions the Tkachenko mode frequency at long wavelengths becomes linear in the wavevector for any propagation direction out of the transverse plane. We compute the correlation functions of the vortex displacements and the superfluid order parameter for a homogeneous Bose gas of bounded extent in the axial direction. At zero temperature the vortex displacement correlations are convergent at large separation, but at finite temperatures, they grow with separation. The growth of the vortex displacements should lead to observable melting of vortex lattices at higher temperatures and somewhat lower particle number and faster rotation than in current experiments. At zero temperature a system of large extent in the axial direction maintains long range order-parameter correlations for large separation, but at finite temperatures the correlations decay with separation.Comment: 10 pages, 2 figures, Changes include the addition of the particle density - vortex density coupling and the correct value of the shear modulu

    The Benefits of Peer Review and a Multisemester Capstone Writing Series on Inquiry and Analysis Skills in an Undergraduate Thesis.

    Get PDF
    This study examines the relationship between the introduction of a four-course writing-intensive capstone series and improvement in inquiry and analysis skills of biology senior undergraduates. To measure the impact of the multicourse write-to-learn and peer-review pedagogy on student performance, we used a modified Valid Assessment of Learning in Undergraduate Education rubric for Inquiry and Analysis and Written Communication to score senior research theses from 2006 to 2008 (pretreatment) and 2009 to 2013 (intervention). A Fisher-Freeman-Halton test and a two-sample Student's t test were used to evaluate individual rubric dimensions and composite rubric scores, respectively, and a randomized complete block design analysis of variance was carried out on composite scores to examine the impact of the intervention across ethnicity, legacy (e.g., first-generation status), and research laboratory. The results show an increase in student performance in rubric scoring categories most closely associated with science literacy and critical-thinking skills, in addition to gains in students' writing abilities

    Self-Consistent Screening Approximation for Flexible Membranes: Application to Graphene

    Get PDF
    Crystalline membranes at finite temperatures have an anomalous behavior of the bending rigidity that makes them more rigid in the long wavelength limit. This issue is particularly relevant for applications of graphene in nano- and micro-electromechanical systems. We calculate numerically the height-height correlation function G(q)G(q) of crystalline two-dimensional membranes, determining the renormalized bending rigidity, in the range of wavevectors qq from 10710^{-7} \AA1^{-1} till 10 \AA1^{-1} in the self-consistent screening approximation (SCSA). For parameters appropriate to graphene, the calculated correlation function agrees reasonably with the results of atomistic Monte Carlo simulations for this material within the range of qq from 10210^{-2} \AA1^{-1} till 1 \AA1^{-1}. In the limit q0q\rightarrow 0 our data for the exponent η\eta of the renormalized bending rigidity κR(q)qη\kappa_R(q)\propto q^{-\eta} is compatible with the previously known analytical results for the SCSA η0.82\eta\simeq 0.82. However, this limit appears to be reached only for q<105q<10^{-5} \AA1^{-1} whereas at intermediate qq the behavior of G(q)G(q) cannot be described by a single exponent.Comment: 5 pages, 4 figure

    Unzipping Vortices in Type-II Superconductors

    Full text link
    The unzipping of vortex lines using magnetic-force microscopy from extended defects is studied theoretically. We study both the unzipping isolated vortex from common defects, such as columnar pins and twin-planes, and the unzipping of a vortex from a plane in the presence of other vortices. We show, using analytic and numerical methods, that the universal properties of the unzipping transition of a single vortex depend only on the dimensionality of the defect in the presence and absence of disorder. For the unzipping of a vortex from a plane populated with many vortices is shown to be very sensitive to the properties of the vortices in the two-dimensional plane. In particular such unzipping experiments can be used to measure the ``Luttinger liquid parameter'' of the vortices in the plane. In addition we suggest a method for measuring the line tension of the vortex directly using the experiments.Comment: 19 pages 15 figure

    Collapsing transition of spherical tethered surfaces with many holes

    Full text link
    We investigate a tethered (i.e. fixed connectivity) surface model on spherical surfaces with many holes by using the canonical Monte Carlo simulations. Our result in this paper reveals that the model has only a collapsing transition at finite bending rigidity, where no surface fluctuation transition can be seen. The first-order collapsing transition separates the smooth phase from the collapsed phase. Both smooth and collapsed phases are characterized by Hausdorff dimension H\simeq 2, consequently, the surface becomes smooth in both phases. The difference between these two phases can be seen only in the size of surface. This is consistent with the fact that we can see no surface fluctuation transition at the collapsing transition point. These two types of transitions are well known to occur at the same transition point in the conventional surface models defined on the fixed connectivity surfaces without holes.Comment: 7 pages with 11 figure

    Double beta decay of 48^{48}Ca

    Get PDF
    48^{48}Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the ββ(2ν)\beta\beta(2\nu) half-life measurement, reported here, provides a unique test of the nuclear physics involved in the ββ\beta\beta matrix element calculation. Enriched 48^{48}Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T1/22ν=(4.31.1+2.4[stat.]±1.4[syst.])×1019_{1/2}^{2\nu} = (4.3^{+2.4}_{-1.1} [{\rm stat.}] \pm 1.4 [{\rm syst.}]) \times 10^{19} years, compatible with the shell model calculations.Comment: 4 pages, LaTex, 3 figures imbedded, PRL forma

    Comparative Quantizations of (2+1)-Dimensional Gravity

    Full text link
    We compare three approaches to the quantization of (2+1)-dimensional gravity with a negative cosmological constant: reduced phase space quantization with the York time slicing, quantization of the algebra of holonomies, and quantization of the space of classical solutions. The relationships among these quantum theories allow us to define and interpret time-dependent operators in the ``frozen time'' holonomy formulation.Comment: 24 pages, LaTeX, no figure

    Photometric, Spectroscopic and Orbital Period Study of Three Early Type Semi-detached Systems: XZ Aql, UX Her and AT Peg

    Full text link
    In this paper we present a combined photometric, spectroscopic and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with the theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes, their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior and as a result we suggest that XZ Aql hosts a {\delta} Scuti component.Comment: 40 pages, 16 figure

    Kinetic Theory of Flux Line Hydrodynamics:LIQUID Phase with Disorder

    Full text link
    We study the Langevin dynamics of flux lines of high--Tc_c superconductors in the presence of random quenched pinning. The hydrodynamic theory for the densities is derived by starting with the microscopic model for the flux-line liquid. The dynamic functional is expressed as an expansion in the dynamic order parameter and the corresponding response field. We treat the model within the Gaussian approximation and calculate the dynamic structure function in the presence of pinning disorder. The disorder leads to an additive static peak proportional to the disorder strength. On length scales larger than the line static transverse wandering length and at long times, we recover the hydrodynamic results of simple frictional diffusion, with interactions additively renormalizing the relaxational rate. On shorter length and time scales line internal degrees of freedom significantly modify the dynamics by generating wavevector-dependent corrections to the density relaxation rate.Comment: 61 pages and 6 figures available upon request, plain TEX using Harvard macro
    corecore