2,475 research outputs found

    Interface damage modeled by spring boundary conditions for in-plane elastic waves

    Get PDF
    In-plane elastic wave propagation in the presence of a damaged interface is investigated. The damage is modeled as a distribution of small cracks and this is transformed into a spring boundary condition. First the scattering by a single interface crack is determined explicitly in the low frequency limit for the case of a plane wave normally incident to the interface. The transmission at an interface with a random distribution of small cracks is then determined and is compared to periodically distributed cracks. The cracked interface is then described by a distributed spring boundary condition. As an illustration the dispersion relation of the first modes in a thick plate with a damaged interface in the middle is given

    Circular photon drag effect in bulk tellurium

    Full text link
    The circular photon drag effect is observed in a bulk semiconductor. The photocurrent caused by a transfer of both translational and angular momenta of light to charge carriers is detected in tellurium in the mid-infrared frequency range. Dependencies of the photocurrent on the light polarization and on the incidence angle agree with the symmetry analysis of the circular photon drag effect. Microscopic models of the effect are developed for both intra- and inter-subband optical absorption in the valence band of tellurium. The shift contribution to the circular photon drag current is calculated. An observed decrease of the circular photon drag current with increase of the photon energy is explained by the theory for inter-subband optical transitions. Theoretical estimates of the circular photon drag current agree with the experimental data.Comment: 8 pages, 4 figure

    Valley separation in graphene by polarized light

    Full text link
    We show that the optical excitation of graphene with polarized light leads to the pure valley current where carriers in the valleys counterflow. The current in each valley originates from asymmetry of optical transitions and electron scattering by impurities owing to the warping of electron energy spectrum. The valley current has strong polarization dependence, its direction is opposite for normally incident beams of orthogonal linear polarizations. In undoped graphene on a substrate with high susceptibility, electron-electron scattering leads to an additional contribution to the valley current that can dominate.Comment: 4+ pages, 2 figure

    Deformed Wigner crystal in a one-dimensional quantum dot

    Full text link
    The spatial Fourier spectrum of the electron density distribution in a finite 1D system and the distribution function of electrons over single-particle states are studied in detail to show that there are two universal features in their behavior, which characterize the electron ordering and the deformation of Wigner crystal by boundaries. The distribution function has a δ\delta-like singularity at the Fermi momentum kFk_F. The Fourier spectrum of the density has a step-like form at the wavevector 2kF2k_F, with the harmonics being absent or vanishing above this threshold. These features are found by calculations using exact diagonalization method. They are shown to be caused by Wigner ordering of electrons, affected by the boundaries. However the common Luttinger liquid model with open boundaries fails to capture these features, because it overestimates the deformation of the Wigner crystal. An improvement of the Luttinger liquid model is proposed which allows one to describe the above features correctly. It is based on the corrected form of the density operator conserving the particle number.Comment: 10 pages, 11 figures. Misprints fixe

    Propagating EUV disturbances in the solar corona : two-wavelength observations

    Get PDF
    Quasi-periodic EUV disturbances simultaneously observed in 171 Å and 195 Å TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics

    On dispersive energy transport and relaxation in the hopping regime

    Full text link
    A new method for investigating relaxation phenomena for charge carriers hopping between localized tail states has been developed. It allows us to consider both charge and energy {\it dispersive} transport. The method is based on the idea of quasi-elasticity: the typical energy loss during a hop is much less than all other characteristic energies. We have investigated two models with different density of states energy dependencies with our method. In general, we have found that the motion of a packet in energy space is affected by two competing tendencies. First, there is a packet broadening, i.e. the dispersive energy transport. Second, there is a narrowing of the packet, if the density of states is depleting with decreasing energy. It is the interplay of these two tendencies that determines the overall evolution. If the density of states is constant, only broadening exists. In this case a packet in energy space evolves into Gaussian one, moving with constant drift velocity and mean square deviation increasing linearly in time. If the density of states depletes exponentially with decreasing energy, the motion of the packet tremendously slows down with time. For large times the mean square deviation of the packet becomes constant, so that the motion of the packet is ``soliton-like''.Comment: 26 pages, RevTeX, 10 EPS figures, submitted to Phys. Rev.

    Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments

    Full text link
    With continued advances in Geographic Information Systems and related computational technologies, statisticians are often required to analyze very large spatial datasets. This has generated substantial interest over the last decade, already too vast to be summarized here, in scalable methodologies for analyzing large spatial datasets. Scalable spatial process models have been found especially attractive due to their richness and flexibility and, particularly so in the Bayesian paradigm, due to their presence in hierarchical model settings. However, the vast majority of research articles present in this domain have been geared toward innovative theory or more complex model development. Very limited attention has been accorded to approaches for easily implementable scalable hierarchical models for the practicing scientist or spatial analyst. This article is submitted to the Practice section of the journal with the aim of developing massively scalable Bayesian approaches that can rapidly deliver Bayesian inference on spatial process that are practically indistinguishable from inference obtained using more expensive alternatives. A key emphasis is on implementation within very standard (modest) computing environments (e.g., a standard desktop or laptop) using easily available statistical software packages without requiring message-parsing interfaces or parallel programming paradigms. Key insights are offered regarding assumptions and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table

    Atomic electric dipole moments of He and Yb induced by nuclear Schiff moments

    Full text link
    We have calculated the atomic electric dipole moments (EDMs) d of ^3He and ^{171}Yb induced by their respective nuclear Schiff moments S. Our results are d(He)= 8.3x10^{-5} and d(Yb)= -1.9 in units 10^{-17}S/(e{fm}^3)e cm. By considering the nuclear Schiff moments induced by the parity and time-reversal violating nucleon-nucleon interaction we find d(^{171}Yb)~0.6d(^{199}Hg). For ^3He the nuclear EDM coupled with the hyperfine interaction gives a larger atomic EDM than the Schiff moment. The result for ^3He is required for a neutron EDM experiment that is under development, where ^3He is used as a comagnetometer. We find that the EDM for He is orders of magnitude smaller than the neutron EDM. The result for Yb is needed for the planning and interpretation of experiments that have been proposed to measure the EDM of this atom.Comment: 4 page

    Weak antilocalization in quantum wells in tilted magnetic fields

    Full text link
    Weak antilocalization is studied in an InGaAs quantum well. Anomalous magnetoresistance is measured and described theoretically in fields perpendicular, tilted and parallel to the quantum well plane. Spin and phase relaxation times are found as functions of temperature and parallel field. It is demonstrated that spin dephasing is due to the Dresselhaus spin-orbit interaction. The values of electron spin splittings and spin relaxation times are found in the wide range of 2D density. Application of in-plane field is shown to destroy weak antilocalization due to competition of Zeeman and microroughness effects. Their relative contributions are separated, and the values of the in-plane electron g-factor and characteristic size of interface imperfections are found.Comment: 8 pages, 8 figure
    corecore