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Interface damage modeled by spring boundary conditions forin-plane elastic
waves

Mikhail V. Goluba,∗, Anders Boströmb

aInstitute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar, 350040 Russia
bDepartment of Applied Mechanics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract

In-plane elastic wave propagation in the presence of a damaged interface is investigated. The damage is modeled as a

distribution of small cracks and this is transformed into a spring boundary condition. First the scattering by a single

interface crack is determined explicitly in the low frequency limit for the case of a plane wave normally incident to

the interface. The transmission at an interface with a random distribution of small cracks is then determined and is

compared to periodically distributed cracks. The cracked interface is then described by a distributed spring boundary

condition. As an illustration the dispersion relation of the first modes in a thick plate with a damaged interface in the

middle is given.

Keywords: elastic waves, spring boundary condition, layered composite, crack, diffraction, boundary integral

equation method, delamination, cracks distribution

1. Introduction

Due to their intrinsic heterogeneity composite materials may be exposed to different types of defects and damage

such as voids, micro-cracking, debonding between different phases etc. This may be induced by processing, fatigue,

environmental conditions, diffusion debonding etc. Damage at an interface in a composite may lead to total debonding,

but may also occur in the form of micro-cracks or similar. It is not obvious how to model such damage for the purpose

of ultrasonic wave propagation and detection. Different approaches that seem natural include a set of micro-cracks, a

thin visco-elastic layer, or a spring boundary condition. The model of damage delamination given by spring boundary

conditions is more general than just a crack. Compared to multiple cracks, spring boundary conditions are more

efficient for modeling of finite heterogeneous fractures [1, 2] (experimentally [3]). Baik and Thompson [4] use a

quasi-static approximation to simulate an imperfect interface by a spring with mass distributed along the interface.

In a different manner Rokhlin and Wang [5] and Rokhlin and Huang [6] derive very similar asymptotic boundary

conditions for interface imperfections modeled by an interfacial multiphase.
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Many studies on the propagation of plane ultrasonic waves through an interface with a distribution of cracks,

inclusions or cavities have been performed. Angel and Achenbach [7], Mikata and Achenbach [8], and Mikata [9]

consider the case of a periodic array of coplanar and inclined strip-like cracks distributed over a plane and show

rather small variations in transmission coefficients. Three-dimensional problems have been also investigated: a layer-

like region of distributed micro-cracks in a bulk material by Achenbach and Zhang [10], a layer of inhomogeneities

(cracks, spherical cavities and inclusions) are analyzed via an integral equation method by Achenbach et al [11]. In

contrast to most of studies (e.g. [4, 12] dealing with 3D problems) where delamination is modeled as a distribution of

cracks, Boström and Wickham [13] consider identical half-spaces with a distribution of contact spots on the interface

between them, in order to model partly closed cracks.

The analysis performed in all these investigations show a reasonable comparison between different approaches:

the transmission coefficients for the different distributions are quite similar if the crack densities are the same. This

makes it reasonable to exploit the simple spring boundary conditions which needs solely knowledge of the spring

stiffness.

The model presented here is a natural continuation of the work started in Boström and Golub [14] on SH wave

propagation in a damaged layered waveguide, where interface damage is substituted by a spring boundary condition

with spring stiffness expressed in terms of a damage parameter. This model is now extended to the case of in-plane

P and SV waves. At first a single interface crack between two half-spaces is considered for normal incidence of a

plane longitudinal or transverse wave. The solution is obtained using a type of analytical boundary integral equation

method [15, 16]. Then the reflection and transmission coefficients for normal incidence for a random and a periodic

distribution of equally sized cracks at the interface between two half-spaces are calculated. At low frequencies these

two situations give quite similar results, and this motivates the use of the simpler explicit expressions for the random

distribution. The transmission coefficients are then transformed into a spring boundary condition by comparing with

the transmission coefficient for this case. It then happens that the normal and tangential spring constants are the same,

leading to a scalar spring constant. As an illustration of the influence of damage the dispersion curves of the modes in

a thick two-layered plate are given.

2. Single interface strip-like crack

Consider first 2D in-plane waves in two elastic isotropic half-spaces with a single interface strip-like crack of

width 2l. A coordinatexzsystem is introduced according to Figure 1. A fixed angular frequencyω is assumed and the

factor exp(−iωt) is suppressed. The displacement vector is denotedu j = {u j
x, u

j
z}, where superscriptj = 1 corresponds

to the lower half-space (z < 0) and j = 2 to the upper half-space (z > 0). The material properties are determined by

the Lamé constantsλ j andµ j and densitiesρ j . Introduce alsoc j
11 = λ

j + 2µ j . Wave motion in this case is governed by

the Lamé equation

c j
11∇∇ · u

j − µ j∇ × (∇ × u j) + ρ jω2u j = 0, j = 1, 2. (1)
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The longitudinal or P wave velocityv j
1 and the transverse or SV wave velocityv j

2 are

v j
1 =

√
c j

11/ρ
j ,

v j
2 =

√
µ j/ρ j.

The corresponding wave numbers arek j
1 andk j

2. The stress components are given by Hooke’s law:

σ
j
xz = µ

j


∂u j

x

∂z
+
∂u j

z

∂x

 ,

σ
j
zz= λ

j ∂u j
x

∂x
+ c j

11

∂u j
z

∂z
,

σ
j
xx = c j

11

∂u j
x

∂x
+ λ j ∂u j

z

∂z
.

2

1

2l

x

z

Figure 1: Geometry of the problem for a single interface crack.

Consider a plane wave incident normally on the plane interfacez = 0 containing the crack (Figure 1). This wave

is reflected and transmitted at the interface and is scattered by the crack. The type of incident wave is specified by the

indexs: for the P wave cases= 1, whereas for the SV waves= 2. The total displacement fieldu is the superposition

of the fielduin in the absence of the crack and the fieldusc scattered by the crack. The field in the absence of the crack

is

uin =


ps(eik1

sz + R−se−ik1
sz), z< 0,

psT−s eik2
1z, z> 0,

(2)

where the reflection and transmission coefficients are

R−s =
c1

sk
1
s − c2

sk
2
s

c1
sk1

s + c2
sk2

s
,

T−s =
2c1

sk
1
s

c1
sk1

s + c2
sk2

s
,
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wheres = 1, 2 and the stiffness constants arec j
1 = c j

11 andc j
2 = µ

j . The subscripts is omitted on most quantities in

the following but this should cause no confusion. For convenience the polarization vectorps describing the type of

incident plane wave is used: for the P wave casep1 = {0, 1}, for the SV wave casep2 = {1, 0}.

The field scattered by the crack has continuous stressesτ
sc = {σxz, σzz} on the interfacez= 0 while the displace-

ment fieldusc has a discontinuity: 

u1,sc = u2,sc, |x| > l,

τ
1,sc = τ2,sc, |x| > l,

τ
1,sc = τ2,sc = −τ1,in, |x| < l.

(3)

The scattered field can be represented as Fourier integrals

usc =
1
2π



∞∫

−∞
K1(α, z)Q(α)e−iαxdα, z< 0,

∞∫

−∞
K2(α, z)Q(α)e−iαxdα, z> 0,

where the Fourier transform (Fx) of the stresses at the interface appears:Q(α) = Fx[τsc(x, 0)]. A detailed description

of the derivation of Green’s matrices for the 3D case has beengiven in [17, 16]. In the problem under consideration

only the 2D Green’s matrix is used

K j(α, z) =
1
∆ j


(−1) jσ2, j(−α2e−σ1, j |z| + γ2

j e
−σ2, j |z|) −iα(−γ2

j e
−σ1, j |z| + σ1, jσ2, je−σ2, j |z|)

−iα(−σ1, jσ2, je−σ1, j |z| + γ2
j e
−σ2, j |z|) (−1) jσ1, j(−γ2

j e
−σ1, j |z| + α2e−σ2, j |z|)

 ,

where

∆ j = 2µ j(−γ4
j + α

2σ1, jσ2, j),

σi, j =

√
α2 − (ω/v j

i )
2, γ2

j = (α2 + σ2
2, j)/2,

and the square roots are chosen according to Reσi, j ≥ 0 and Imσi, j ≤ 0.

In view of the boundary conditions (3) the Fourier transformof the stresses on the interface

Q(α) = L(α)V(α)

are connected with the Fourier transform of the unknown crack-opening displacementV = Fx[v]

v(x) = u1,sc(x, 0−) − u2,sc(x, 0+)

by means of the matrix

L(α) =
[
K1(α, 0)− K2(α, 0)

]−1
.

Substitution of the integral representation forτsc into (3) gives

1
2π

∞∫

−∞

L(α)V(α)eiαxdα = −ic1
sk

1
s(1− R−s ) ps. (4)
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This is an integral equation for the unknown crack-opening displacement.

To discretize the integral equation the crack-opening displacement is expanded in a series

v(x) =
∞∑

n=1

αnψn(x/l), (5)

where the Chebyshev functions are used as basis functions

ψn(s) =
sin (narccoss)

sins
.

These functions form a complete set on the interval [−l, l] and they have a square root behaviour at the crack edges.

However, it is known that the correct singularity at the crack edge also contains an oscillatory factor and this can

be included in the expansion by taking Jacobi polynomials instead of Chebyshev polynomials (see [18]). These

oscillations are not included here because this complicates the calculations of some integrals below and presumably

the oscillations are not very important. Inserting this expansion into the integral equation Eq. (4) and projecting on

the Chebyshev functions gives the following discretized form of the integral equation

∞∑

n=1

Qnn′αn′ = −iHs l psδn1,

whereδn1 is the Kronecker delta. The constantsHs are defined as

Hs =
c1

sc
2
sk

1
sk

2
s

c1
sk1

s + c2
sk2

s
,

and the matrix on the left-hand side of the equation is

Qnn′ =
1
2π

∞∫

−∞

L(α)Jn(αl)Jn′ (αl)
dα
α2
.

3. Asymptotic solution for a single interface strip-like crack

The procedure described above is suitable for numerical calculations. But if the crack is small an asymptotic

analysis can be performed to yield an analytical expressionand this is much more useful in the present case. At low

frequencies (ωl/v j
i << 1) the square roots can be expanded as

σi, j = α − ω2(v j
i )
−2/(2α).

This leads to the following approximation for the kernel of the integral equation (4)

L(α) ∼ L̃α =
[
K̃1 − K̃2

]−1
α,

where

K̃ j = −
1

2µ j(λ j + µ j)


(−1) jc j

11 iµ j

−iµ j (−1) jc j
11

 .
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Subsequently, the asymptotic approximation of the kernel becomes

L̃ =
2

β2
1 − β2

2


β1 −iβ2

iβ2 β1

 ,

which only depends on the elastic constants

β1 =
c1

11

(λ1 + µ1)µ1
+

c2
11

(λ2 + µ2)µ2
, β2 =

1
λ1 + µ1

− 1
λ2 + µ2

.

With this low frequency approximation the matrix in the system of equations can be calculated analytically:

Qnn′ =
L̃
2π

∞∫

−∞

Jn(αl)Jn′(αl)
dα
α
=

L̃
2πn

δnn′ .

The crack-opening displacement for an incident P wave at lowfrequencies then becomes

vL
0(x) = iHL


iβ2

β1


√

l2 − x2. (6)

For an incoming SV wave a very similar expression is obtained

vT
0 (x) = iHT


β1

−iβ2


√

l2 − x2. (7)

In this case with different materials in the two half-spaces the crack-opening displacement has two components in

general. When the two materials are the same, or more generally whenλ1+ µ1 = λ2+ µ2, β2 = 0 and there is only one

component.

To estimate the accuracy of the asymptotic crack-opening displacement, the exact average computed from (5) is

compared to the average calculated from the asymptotic formulae (6) or (7). The average value of the crack opening

displacement is defined as

v =
1
2l

∫ l

−l
v(x) dx.

The ratio between the asymptotic low frequency solution andthe exact solution for an incident P wavevL
z/v

L
0z is shown

in Figure 2, with the real and imaginary parts shown separately. The densities in the two half-spaces are assumed to

be equalρ1 = ρ2, while four different ratios between the elastic constants are considered:c2
i j = Bc1

i j , B = 1, 2, 3, 4,

whereci j is any of the elastic constants. This implies that the Poisson ratiosν j = λ j · [2(λ j + µ j)]−1 are also equal,

and they are chosen asν1 = ν2 = 0.3333. The low frequency asymptotic solution is accurate within a few percent up

to dimensionless frequency around 0.3. As the focus here is on small interface cracks due to damage, the asymptotic

solution is used in the following. This also has the great advantage of giving explicit formulae for the crack-opening

displacement and later also for the spring constant.
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Figure 2: The real and imaginary part of the ratiovL
z/v

L
0z between the average value of the exact solution and the low frequency solution of the

integral equation.

4. Random distribution of interface cracks

Following the scheme used for the SH case [14], consider a plane P or SV wave propagating normally to an

interface with a distribution of cracks of the same width 2l, see Figure 3. In this section the situation with a random

distribution of cracks is investigated and in the next section this is compared to a periodic distribution of cracks. Fora

random distribution the assumption of cracks of the same size is not important and the results can easily be generalized

to a distribution in size. The crack density parameterC is introduced as the ratio of the cracked part withNc cracks to

the total segment of lengthx0 (which is assumed to be large)

C = Ncl/x0.

The parameterC can be viewed as a damage parameter when the cracking is assumed to be due to interface damage.

For a periodic array of cracks the crack densityC is evidently simplified to

C = 2l/w,

wherew is the distance between the centres of two adjacent cracks.

The total field is written asu = uin + usc as in the Section 2. The incident fielduin is still given by (2), whileusc is

the field scattered by all the cracks. It is assumed that the interaction between the cracks can be neglected [12]. The
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Figure 3: Geometry of the distribution of interface cracks.Random distribution of cracks of the same size (a) and periodic array of cracks (b).

exact scattered field for the random distribution is impossible to determine and is of no interest in fact. Instead the

ensemble average of the scattered field is calculated and farfrom the interface this average field should approximate

the total field scattered by the random distribution of cracks. Far away from the interface the ensemble average of the

scattered field consists solely of outgoing plane waves propagating in the±zdirection:

〈usc〉 = ps


P−se−ik1

sz, z< 0

P+seik2
sz, z> 0

(8)

The Betty-Rayleigh reciprocal relation to the two elastodynamic statesusc anduin is now applied:
∫

S

[
uin

i · τsc
i j − usc

i · τin
i j

]
n jdS = 0.

The contourS is assumed to be a sum of the rectangular contourS− with corners at the points (±x0, 0−), (±x0,−z0)

and the rectangular contourS+ with corners at (±x0, 0+), (±x0, z0) which is symmetric toS− with respect to thex axis.
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The integrals along the interface then cancel along the uncracked parts and contain the crack-opening displacement

along the cracked parts. Taking an ensemble average the other integrals can all be calculated and this gives for the

reflection coefficient

P−s = −
1
2

(1− R−s )C ps · vs
,

which is expressed in terms of the average value of the crack-opening displacement for a single crack. At low

frequencies the asymptotic approximation from the previous section can be used.

The reflection coefficientP+s must be determined also. For this purpose the reciprocal relation is used with a plane

wave incident from the upper half-space

uin = ps


T+s e−ik2

sz, z< 0

e−ik1
sz + R+seik1

sz, z> 0

where the reflection and transmission coefficients are related to the previous ones:

R+s = −R−s , T+s = 1+ R+s .

An analogous evaluation of the Betti-Rayleigh relation forthe newuin and the oldusc (still given by Eq. (8)) gives

P+s = −
1
2

(1+ R−s )Cps · vs
.

Subsequently the ensemble average of the total transmission coefficient for the distribution of cracks becomes

T̃s = T−s + P+s = T−s

(
1− 1

2
Cps · vs

)
. (9)

Thus the total transmission by the cracked interface is expressed in terms of the material constants, the length of the

cracks and the parameterC describing the density of cracks.

5. Periodic distribution of interface cracks

The problem of determining the transmission and reflection coefficients for a periodic distribution of interface

cracks can be solved in essentially the same way as for a single crack. The problem with periodic cracks in an

otherwise homogenous material, the special case when the half-spaces are of the same material, is considered by

Mikata [9], so only a few steps are indicated here. The displacement jumpv on the interface is of course the sum of

the crack-opening displacementsv j , j = 0,±1,±2 . . ., on each crack. Thus, instead of the integral equation (4) for a

single crack the singular integral equation becomes

1
2π

∞∫

−∞

L(α)
∞∑

j=−∞
Vs

j(α)eiαxdα = −ic1
sk

1
s(1− R−s )ps, |x| < l.

For normal incidence the crack-opening displacements on the cracks are all identical and after a Fourier transform

this means

Vs
j(α) = Vs

0(α) exp(iαw j).

9



The crack-opening displacement is again expanded in the Chebyshev functions, exactly as for a single crack

vs
0 =

∞∑

k=1

α
s
kψk(x/l).

Projecting also on the Chebyshev functions leads to the discretized integral equation:

∞∑

n=1

Q̂s
nn′α

s
n′ = −iKs l ps δn1.

The matrixQ̂s
nn′ can be evaluated using the following relation reorganizinga sum of delta functions into an exponential

series
∞∑

j=−∞
eiβ j =

∞∑

j=−∞
δ

(
β

2π
− j

)
,

so that the result is

Q̂s
nn′ = −

∞∑

j=−∞
L(α j)

Jn(α j l)Jn′ (−α j l)

w(α j l)2

∣∣∣∣∣∣∣∣
α j=2π j /w

.

Once the crack-opening displacement is determined it is straightforward to calculate the transmission and reflection

coefficients, see Mikata [9].
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Figure 4: Relative difference 1− |T′L |/|T̃L | between the scattered field by periodic array of cracksT′L and by random distribution of cracks̃TL.

The random and periodic distribution of interface cracks can both be seen as models of the situation with interface

damage. It is therefore of interest to see how close these areto each other. Figure 4 shows the relative difference

between the amplitude transmission coefficients for the random̃TL and periodicT′L distribution of cracks as a function

of frequency. The densities and Poisson’s ratios of the half-spaces are equal (ρ1 = ρ2, ν1 = ν2 = 0.3333) and four

different ratios between the elastic constants are considered:c2
i j = Bc2

i j , B = 1, 2, 3, 4, whereci j is any of the elastic

constants. At low frequencies the relative difference is about 10 %, so the two distributions give quite similar results.

The difference is in fact smaller than could be expected from other uncertainties in the model, such as different crack

10



sizes or partially closed cracks. The difference in transmission coefficient of the random and periodic distribution is in

accordance with results of Sotiropoulos and Achenbach [12], where statistical and periodic distributions are compared.

As the random distribution of cracks leads to simple, explicit expressions, this model is used in the following when

the spring boundary conditions are derived.

6. Spring boundary conditions

The random distribution of cracks is now transformed into a model with an equivalent spring boundary condition.

This boundary condition demands that the stress is continuous while the jump in displacement is proportional to the

stress:

τ
1 = τ2 = κ

(
u1 − u2

)
. (10)

Hereκ is a two-by-two matrix, whose elements are determined by a comparison with the transmission coefficients

for the random distribution of cracks. In this process a normally incident incoming P wave is used to determine the

normal spring componentκ22 = κL and an S wave to determine the tangential spring componentκ11 = κS. The off-

diagonal elements can be assumed to vanish as the incoming P wave which hits the crack gives no scattered S wave

in the forward direction and vice versa.

The incoming wave is still normally incident plane wave frombelow, exactly as in Section 2:

us =


ps

(
eik1

1z + R̂se−ik1
sz
)
, z< 0,

psT̂seik2
sz, z> 0,

(11)

The transmission and reflection coefficients are easily calculated for the spring boundary conditions:

R̂−s =
ic1

sk
1
sc

2
sk

2
s + κs(c1

sk
1
s − c2

sk
2
s)

ic1
sk1

sc2
sk2

s + κs(c1
sk1

s + c2
sk2

s)
,

T̂−s =
2κsc1

sk
1
s

ic1
sk1

sc2
sk2

s + κs(c1
sk1

s + c2
sk2

s)
.

As befores= 1, 2 denotes an incoming P or S wave, respectively.

To determineκs the expression for̂T−s should now be put equal to the transmission coefficient for the random dis-

tribution of cracks given by Eq. (9). Using also the low frequency approximation for the crack opening displacement

Eq. (6) or (7) this gives

κs =
8

πClβ1
− iHs.

This equation can be used as is and this leads to a complex spring constant, which leads to energy losses. However,

makingκs dimensionless by dividing withc1
sk

1
s it is seen that the first term dominates for low frequencies (k1

sl small),

so the last term can be neglected and the final result for the spring constant becomes

κ =
8

πClβ1
. (12)

11



As the spring constant becomes the same fors = 1, 2, the indexs on κ is omitted. This means that the spring matrix

in Eq. (10) becomes the scalarκ in Eq. (12). The spring constant is also frequency independent, and this means that

the present spring boundary conditions can be used also in the time domain. However, if the present spring constant

is compared with the one for the anti-plane (SH) case as givenby Boström and Golub [14], it differs in that the elastic

constants enter in another way.

7. Dispersion properties
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Figure 5: Phase velocities of the first modes for two-layeredplate with spring boundary conditions (10): (a) similar materials, (b) distinct materials.

To give an idea of the influence of the spring boundary condition, a simple example with the dispersion relation

for a layered plate is now presented. A plate with total thicknessd = d1 + d2 composed of two layers of thicknesses

12



d1/d = 0.25 andd2/d = 0.75 is considered. The two layers are connected with the spring boundary condition,

while the outer surfaces are traction-free. To measure the strength of the interface it is convenient to introduce the

dimensionless spring constantγ according to:

γ = κ
µ1d
(ρ1)2

.

Note that this normalization is made so thatγ is frequency independent. However, it is then necessary to use a length,

in this case the plate thicknessd, to normalize with. This is somewhat unnatural as this length has nothing to do with

the interface. It is noted thatγ must be large for the developments in previous sections to bevalid. The spring constant

valueγ→ ∞ corresponds to perfect (welded) contact.

The densities in the two layers are assumed equal and the elastic constants are either equal or those in layer 2

are twice those in layer 1:c2
i j = 2c1

i j , with ck
i j any of the elastic constants. The Poisson ratios of the both layers

areν1 = ν2 = 0.33333. The wave number in the direction of propagation isk and the dispersion plots show the

dimensionless phase velocityvph = 1/kd as function of dimensionless frequencyωd/v1
2.

Figures 5 a and b show the dispersion curves for identical anddifferent material properties in the two layers,

respectively, for different values of the spring constant. The curves are quite complicated, especially for smallerγ.

The curves for the large valueγ = 100 hardly differ from welded contact (γ→ ∞), but alreadyγ = 10 gives relatively

large deviations, andγ = 1 even more so, of course. However, the present model may not be valid as a model for

interface damage whenγ = 1.

8. Concluding remarks

The main goal of the present paper is to investigate an interface with damage. This damage is modeled as a random

distribution of small cracks of equal size. This model is then transformed into a spring boundary condition and a very

simple expression is obtained for the spring constant. The use of this spring boundary condition is illustrated with the

dispersion curves for a two-layered plate with interface damage.

While the derivation of the spring stiffness is performed for normal incidence of a plane wave, it is plausible that

is a good approximation for any direction of incidence. In the SH case this has been demonstrated by Boström and

Kvasha [19] where the dispersion relation (where non-normal directions are essential) in a layered plate with damage

modeled by spring boundary conditions (derived as here) or aperiodic array of interface cracks (solved exactly as

here) are compared with a good correspondence.

The present methodology can be extended in several directions. Both the 3D case and anisotropy are of interest

to make the spring boundary conditions for damage accessible to a wider range of problems. To investigate the

importance and detectability of damage in various situations, specific problems should be studied. This may be an

interface with only partial damage, damage in a layered plate, etc.
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