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Abstract

In-plane elastic wave propagation in the presence of a dadiagerface is investigated. The damage is modeled as a
distribution of small cracks and this is transformed intgergy boundary condition. First the scattering by a single
interface crack is determined explicitly in the low freqagitimit for the case of a plane wave normally incident to
the interface. The transmission at an interface with a ramdistribution of small cracks is then determined and is
compared to periodically distributed cracks. The crackeerface is then described by a distributed spring boundary
condition. As an illustration the dispersion relation of first modes in a thick plate with a damaged interface in the
middle is given.

Keywords: elastic waves, spring boundary condition, layered contppsiack, difraction, boundary integral

equation method, delamination, cracks distribution

1. Introduction

Due to their intrinsic heterogeneity composite materiadgy/ine exposed to flerent types of defects and damage
such as voids, micro-cracking, debonding betwediedint phases etc. This may be induced by processing, fatigue
environmental conditions, fiusion debonding etc. Damage at an interface in a compositéaad to total debonding,
but may also occur in the form of micro-cracks or similarslhbt obvious how to model such damage for the purpose
of ultrasonic wave propagation and detectionff&ient approaches that seem natural include a set of miaakgra
thin visco-elastic layer, or a spring boundary conditiohehodel of damage delamination given by spring boundary
conditions is more general than just a crack. Compared taiptaulcracks, spring boundary conditions are more
efficient for modeling of finite heterogeneous fractures [1,e¥pgerimentally [3]). Baik and Thompson [4] use a
guasi-static approximation to simulate an imperfect fats by a spring with mass distributed along the interface.
In a different manner Rokhlin and Wang [5] and Rokhlin and Huang [@ivdevery similar asymptotic boundary

conditions for interface imperfections modeled by an ifatgial multiphase.
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Many studies on the propagation of plane ultrasonic wavesuthh an interface with a distribution of cracks,
inclusions or cavities have been performed. Angel and Abhehn [7], Mikata and Achenbach [8], and Mikata [9]
consider the case of a periodic array of coplanar and intIstgp-like cracks distributed over a plane and show
rather small variations in transmission @gents. Three-dimensional problems have been also igadetl: a layer-
like region of distributed micro-cracks in a bulk materigl Achenbach and Zhang [10], a layer of inhomogeneities
(cracks, spherical cavities and inclusions) are analyzedw integral equation method by Achenbach et al [11]. In
contrast to most of studies (e.qg. [4, 12] dealing with 3D peats) where delamination is modeled as a distribution of
cracks, Bostrom and Wickham [13] consider identical Isplces with a distribution of contact spots on the interface
between them, in order to model partly closed cracks.

The analysis performed in all these investigations showaaarable comparison betweelffelient approaches:
the transmission cdkcients for the dierent distributions are quite similar if the crack densitee the same. This
makes it reasonable to exploit the simple spring boundamgitions which needs solely knowledge of the spring
stiffness.

The model presented here is a natural continuation of th& atarted in Bostrdom and Golub [14] on SH wave
propagation in a damaged layered waveguide, where intedamage is substituted by a spring boundary condition
with spring stifness expressed in terms of a damage parameter. This modasV isxtended to the case of in-plane
P and SV waves. At first a single interface crack between twWibdpaces is considered for normal incidence of a
plane longitudinal or transverse wave. The solution isiolethusing a type of analytical boundary integral equation
method [15, 16]. Then the reflection and transmissiorffments for normal incidence for a random and a periodic
distribution of equally sized cracks at the interface betvivo half-spaces are calculated. At low frequencies these
two situations give quite similar results, and this motagthe use of the simpler explicit expressions for the random
distribution. The transmission cfieients are then transformed into a spring boundary comditiocomparing with
the transmission cdigcient for this case. It then happens that the normal and taijspring constants are the same,
leading to a scalar spring constant. As an illustration efitfiluence of damage the dispersion curves of the modes in

a thick two-layered plate are given.

2. Singleinterface strip-like crack

Consider first 2D in-plane waves in two elastic isotropicftsplaces with a single interface strip-like crack of
width 2. A coordinatexzsystem is introduced according to Figure 1. A fixed angukgdiencyw is assumed and the
factor expfiwt) is suppressed. The displacement vector is denﬂte:d{uf(, ui}, where superscrigt= 1 corresponds
to the lower half-spacez(< 0) andj = 2 to the upper half-space ¢& 0). The material properties are determined by
the Lamé constants andu! and densitiep!. Introduce alsa!, = A1 + 2ul. Wave motion in this case is governed by
the Lamé equation

VYU -V x (Vxu) +plwul =0, j=1,2 (1)
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The longitudinal or P wave veIocitsx{ and the transverse or SV wave veloo'rg)are

| P R
Vi = Cll/P'a
vy = Vul/pl.

The corresponding wave numbers kfeandki. The stress components are given by Hooke’s law:

i (oul Ul
O-izzﬂj(_x + _Z]’

0z 0x
P jauf( i au
Oz,=A4 X + CllE’
P aui ]é)ué
Oyx = Cll& +4 T
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Figure 1: Geometry of the problem for a single interface kerac

Consider a plane wave incident normally on the plane interZa= O containing the crack (Figure 1). This wave
is reflected and transmitted at the interface and is scdttgréhe crack. The type of incident wave is specified by the
indexs: for the P wave case= 1, whereas for the SV wawe= 2. The total displacement fieldis the superposition
of the fieldu™™ in the absence of the crack and the fia¥iscattered by the crack. The field in the absence of the crack
is
pT M7, z>0, @)
where the reflection and transmission méents are

- { Pk + Rge®?), z<0,

cild - i
- @

ciki + c2k2
11
T- = 2c.ks
LR
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wheres = 1,2 and the sfthess constants aoé = c{l andcé = u). The subscrips is omitted on most quantities in
the following but this should cause no confusion. For coremce the polarization vect@® describing the type of
incident plane wave is used: for the P wave cpse {0, 1}, for the SV wave casg? = {1, 0}.

The field scattered by the crack has continuous stras8es{o;, ozz} on the interface = 0 while the displace-

ment fieldus® has a discontinuity:

ul,SC — UZ’SC, |X| > |,
T = 725, X > 1, 3)
Tl,sc — Tz,sc — _Tl,in’ |X| <.

The scattered field can be represented as Fourier integrals

1 f K(e, 2Q(a)e"*da, z<0,
ScC

U= —1{ 73
21 [ K2(a. 2Q(e)e ™ der, 2> O,

where the Fourier transfornfy) of the stresses at the interface appe@@:) = F«[1°%(x, 0)]. A detailed description
of the derivation of Green’s matrices for the 3D case has lg@am in [17, 16]. In the problem under consideration

only the 2D Green’s matrix is used

. 1| (1) j(—a?e il + y2e2ild)  —ja(—y2e 1l + 0y jorp j72IMR)
KN(a,2) = — ! L ’
j —ia'(—O']_,jO'zyje_(Tl'jlzl + ije—D'z,jIZl) (—1)]0'1,]‘(—7126_0—17]‘21 + QZe—o'z,j\Zl)

where

Aj = 2,u1(—y‘j‘ + 0'20'1,]‘0'2,]'),

gij= 2 - (M2 Y= (?+ad)/2,

and the square roots are chosen according tg Re 0 and Inv; ; < 0.

In view of the boundary conditions (3) the Fourier transfafithe stresses on the interface
Q(a) = L()V(e)
are connected with the Fourier transform of the unknownleaening displacemem = F,[V]
v(x) = utSY(x, 07) — u%s%(x, 0%)

by means of the matrix
L(a) = [K™@ 0) - KX(@.0)] .

Substitution of the integral representation ftinto (3) gives

% f L(e)V(2)é™da = —ictki(1- R;) p°. (4)
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This is an integral equation for the unknown crack-openisgldcement.

To discretize the integral equation the crack-openingldégment is expanded in a series

V() = ) anin(x/1), (5)
n=1

where the Chebyshev functions are used as basis functions

sin (narccos)
sins '

Yn(s) =

These functions form a complete set on the intervall] and they have a square root behaviour at the crack edges.
However, it is known that the correct singularity at the &radge also contains an oscillatory factor and this can
be included in the expansion by taking Jacobi polynomiad¢éeiad of Chebyshev polynomials (see [18]). These
oscillations are not included here because this compBdate calculations of some integrals below and presumably
the oscillations are not very important. Inserting thisaxgion into the integral equation Eq. (4) and projecting on

the Chebyshev functions gives the following discretizedfof the integral equation
Z Qurar = —iHsIp®6n1,
n=1

whered; is the Kronecker delta. The constahtsare defined as

CsCeksks
ST A1l o 2Kk’
cikl + c2kZ

and the matrix on the left-hand side of the equation is

Qu = - f L) (e (o) 2.

3. Asymptotic solution for a singleinterface strip-like crack

The procedure described above is suitable for numericalitzdlons. But if the crack is small an asymptotic
analysis can be performed to yield an analytical expressmhthis is much more useful in the present case. At low

frequencie&(;l/vij << 1) the square roots can be expanded as
7ij = a - (V) ?/(20).
This leads to the following approximation for the kernellod integral equation (4)
L(a) ~ La = [Rl - IZZ]_l a,
where

ko 1 [CDe W)
VW) | L (-1yid,
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Subsequently, the asymptotic approximation of the keraebmes

— 2 B1 —ip2
L=7—7%] . ’
Bi=B3\ iB. p1

which only depends on the elastic constants

1 2
__ % Cn B = 1 1
(At + )t (22 + pP)p? Arpt o A%+ p?

With this low frequency approximation the matrix in the gyatof equations can be calculated analytically:

B

L[ doe T
Qur = 5 fJn(aan,(m);“ = 5 6.
The crack-opening displacement for an incident P wave afiequencies then becomes
i
VE(X) = iHL P2 | Ee. (6)
B
For an incoming SV wave a very similar expression is obtained
Vi (X) = iHy ;_%’1 2_x2. @)
—IB2

In this case with dferent materials in the two half-spaces the crack-openisglattement has two components in
general. When the two materials are the same, or more ggnatan At + u* = 12 + u?, B, = 0 and there is only one
component.

To estimate the accuracy of the asymptotic crack-openisgjatement, the exact average computed from (5) is

compared to the average calculated from the asymptoticulaen(6) or (7). The average value of the crack opening

V= %f_:v(x)dx

The ratio between the asymptotic low frequency solutiontaeaxact solution for an incident P waidp/\‘/'(gz is shown

displacement is defined as

in Figure 2, with the real and imaginary parts shown sepiraithe densities in the two half-spaces are assumed to
be equap® = p?, while four diferent ratios between the elastic constants are considq"i’ed:Bqu, B=1234,
whereg;; is any of the elastic constants. This implies that the Paisatiosy! = Al - [2(4) + p))]~* are also equal,
and they are chosen a% = v? = 0.3333. The low frequency asymptotic solution is accurat@iwia few percent up

to dimensionless frequency around 0.3. As the focus hene srall interface cracks due to damage, the asymptotic
solution is used in the following. This also has the greatatlvge of giving explicit formulae for the crack-opening

displacement and later also for the spring constant.



Ly=L
Imv,"/v,,

2=l
c’/ a/

i i P

Figure 2: The real and imaginary part of the raikd\‘/gz between the average value of the exact solution and the keguéncy solution of the

integral equation.

4, Random distribution of interface cracks

Following the scheme used for the SH case [14], consider mepfaor SV wave propagating normally to an
interface with a distribution of cracks of the same widthsze Figure 3. In this section the situation with a random
distribution of cracks is investigated and in the next secthis is compared to a periodic distribution of cracks. &or
random distribution the assumption of cracks of the saneisizot important and the results can easily be generalized
to a distribution in size. The crack density paramétés introduced as the ratio of the cracked part Withcracks to

the total segment of lengtky (which is assumed to be large)
C = Ncl/XO.

The paramete€ can be viewed as a damage parameter when the cracking isessoime due to interface damage.

For a periodic array of cracks the crack den§ltis evidently simplified to
C=2/w,

wherew is the distance between the centres of two adjacent cracks.
The total field is written as = u™ + usCas in the Section 2. The incident fie# is still given by (2), whileus¢is

the field scattered by all the cracks. It is assumed that tieeadotion between the cracks can be neglected [12]. The
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N, cracks

$ 2 3 3

N, cracks

$ 2 3 3

Figure 3: Geometry of the distribution of interface cradRandom distribution of cracks of the same size (a) and pieramiay of cracks (b).

exact scattered field for the random distribution is impassio determine and is of no interest in fact. Instead the
ensemble average of the scattered field is calculated arfidbfarthe interface this average field should approximate
the total field scattered by the random distribution of ceadtar away from the interface the ensemble average of the
scattered field consists solely of outgoing plane wavesagating in thetz direction:

Piecz z<0

u*) = p° - (8)
P&z z>0

The Betty-Rayleigh reciprocal relation to the two elastuaiyic statesi*® andu™ is now applied:
f[u}" i ufc-‘r;ﬂ n;dS = 0.
S

The contousS is assumed to be a sum of the rectangular confowvith corners at the pointstfo, 07), (£Xo, —20)
and the rectangular conto8t with corners at£xg, 0*), (+Xo, 2p) which is symmetric t&~ with respect to the axis.
8



The integrals along the interface then cancel along theasked parts and contain the crack-opening displacement
along the cracked parts. Taking an ensemble average theiotbgrals can all be calculated and this gives for the
reflection coéicient

Ps = —%(1— R)Cp*-V°,

which is expressed in terms of the average value of the avaeking displacement for a single crack. At low
frequencies the asymptotic approximation from the prevgrction can be used.
The reflection coficientP{ must be determined also. For this purpose the reciprocaloalis used with a plane
wave incident from the upper half-space
—'k§
in S T;e I Z’ z<0
ez RtéR? 250
where the reflection and transmission fméents are related to the previous ones:
Ri=-Ry, Ti=1+R.
An analogous evaluation of the Betti-Rayleigh relationtfa newu™™ and the olduse (still given by Eq. (8)) gives
1
Ps = —5(1 +R;)Cp®- V.
Subsequently the ensemble average of the total transmisséficient for the distribution of cracks becomes
~ 1 _
T5=T5+P§=Ts(1—§CpS-VS). 9)

Thus the total transmission by the cracked interface isesgad in terms of the material constants, the length of the

cracks and the parametérdescribing the density of cracks.

5. Periodic distribution of interface cracks

The problem of determining the transmission and reflectosficients for a periodic distribution of interface
cracks can be solved in essentially the same way as for aesangtk. The problem with periodic cracks in an
otherwise homogenous material, the special case when thepgages are of the same material, is considered by
Mikata [9], so only a few steps are indicated here. The degtaent jumpr on the interface is of course the sum of
the crack-opening displacemenis j = 0,+1,+2..., on each crack. Thus, instead of the integral equation {43 fo

single crack the singular integral equation becomes

10 - . i
> fL(a) Z V(@)™ da = —icgks(1 - Rg)p®, IX <.
% j=—oo
For normal incidence the crack-opening displacements erctthcks are all identical and after a Fourier transform
this means
V§(a) = Vg(a) exp(iow)).
9



The crack-opening displacement is again expanded in thbyShev functions, exactly as for a single crack
Vo= e/,
k=1
Projecting also on the Chebyshev functions leads to theeatized integral equation:
Z Q\ﬁwaﬁ/ = _lKS | pS (5n1.
n=1

The matrix@ﬁw can be evaluated using the following relation reorganiaisgm of delta functions into an exponential

j:—oo j:—oo

series

so that the result is
o~ - Z L(aj)%(aﬂ)%/(—aj')
. £ w(ajl)?
J==eo @j=2rj jw
Once the crack-opening displacement is determined it agttfforward to calculate the transmission and reflection

codficients, see Mikata [9].

0.4
’
~ ,”
l_i —_cl=cl ./..'/
T’ i i o
L i X

0 0.5 1 1.5
wl/v)

Figure 4: Relative dference 1- |TL|/|T’[| between the scattered field by periodic array of craigkand by random distribution of cracks .

The random and periodic distribution of interface cracksloath be seen as models of the situation with interface
damage. It is therefore of interest to see how close thestwarach other. Figure 4 shows the relativEatience
between the amplitude transmission iméents for the randorfi, and periodicT| distribution of cracks as a function
of frequency. The densities and Poisson’s ratios of thesmtes are equah( = p?, v* = v? = 0.3333) and four
different ratios between the elastic constants are considéfed:quj, B = 1,2, 3,4, whereg;; is any of the elastic
constants. At low frequencies the relativ@éience is about 10 %, so the two distributions give quitelaiméesults.

The diference is in fact smaller than could be expected from otheertainties in the model, such adfdrent crack
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sizes or partially closed cracks. Thdfdrence in transmission cfiieient of the random and periodic distribution is in
accordance with results of Sotiropoulos and Achenbach jit2¢re statistical and periodic distributions are comgare
As the random distribution of cracks leads to simple, expliepressions, this model is used in the following when

the spring boundary conditions are derived.

6. Spring boundary conditions

The random distribution of cracks is now transformed intoad el with an equivalent spring boundary condition.
This boundary condition demands that the stress is conisudile the jump in displacement is proportional to the
stress:

t=1%= K(ul - uz). (20)

Herek is a two-by-two matrix, whose elements are determined byrapesison with the transmission deients
for the random distribution of cracks. In this process a radlyrincident incoming P wave is used to determine the
normal spring componert, = k. and an S wave to determine the tangential spring companent «ks. The df-
diagonal elements can be assumed to vanish as the incomiagd®which hits the crack gives no scattered S wave
in the forward direction and vice versa.
The incoming wave is still normally incident plane wave frbelow, exactly as in Section 2;
ps (e“‘iZ + ﬁse‘“‘%z), z<0,

us = S, (11)
pSTe?, z>0,

The transmission and reflection ¢beients are easily calculated for the spring boundary cardit

R - icgkscak? + ks(ciks — ckd)
" iclklc2k2 + ko(cLkL + c2k2)’

141
= 2ksCeKs

T: =
S iclklc2k2 1l 21c2) "
ictkicZks + ks(clkd + c2k3)

As befores = 1, 2 denotes an incoming P or S wave, respectively.

To determinecs the expression fofg should now be put equal to the transmissionfiioent for the random dis-
tribution of cracks given by Eq. (9). Using also the low freqay approximation for the crack opening displacement

Eq. (6) or (7) this gives
8
B 71'C|ﬂ1

This equation can be used as is and this leads to a compl&gsmnstant, which leads to energy losses. However,

Ks —iHs.

makingks dimensionless by dividing withlk! it is seen that the first term dominates for low frequendiélsgmall),

so the last term can be neglected and the final result for ttiregsponstant becomes

8

K= m (12)
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As the spring constant becomes the samesferl, 2, the indexs on « is omitted. This means that the spring matrix
in Eq. (10) becomes the scakam Eq. (12). The spring constant is also frequency independad this means that
the present spring boundary conditions can be used alse itinle domain. However, if the present spring constant

is compared with the one for the anti-plane (SH) case as ¢iydBostrom and Golub [14], it diers in that the elastic

constants enter in another way.

7. Dispersion properties

(a) Identical materials
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(b) Distinct materials

3 ‘
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Figure 5: Phase velocities of the first modes for two-laygilate with spring boundary conditions (10): (a) similar erétls, (b) distinct materials.

To give an idea of the influence of the spring boundary coowljta simple example with the dispersion relation
for a layered plate is now presented. A plate with total thedsd = d; + d, composed of two layers of thicknesses

12



di/d = 0.25 andd,/d = 0.75 is considered. The two layers are connected with the gfroundary condition,
while the outer surfaces are traction-free. To measurettkagth of the interface it is convenient to introduce the

dimensionless spring constgnaccording to:

p'd
Y =K (pl)Z'
Note that this normalization is made so thas frequency independent. However, it is then necessarge@uength,

in this case the plate thicknedsto normalize with. This is somewhat unnatural as this leingts nothing to do with
the interface. Itis noted thgtmust be large for the developments in previous sections talidt The spring constant
valuey — oo corresponds to perfect (welded) contact.

The densities in the two layers are assumed equal and th&elasstants are either equal or those in layer 2
are twice those in layer 1Ci2j = Zcilj, with c}‘j any of the elastic constants. The Poisson ratios of the lagtérs
arev! = v? = 0.33333. The wave number in the direction of propagatiok @d the dispersion plots show the
dimensionless phase velocity, = 1/kd as function of dimensionless frequenogl/v%.

Figures 5 a and b show the dispersion curves for identicaldffierent material properties in the two layers,
respectively, for dierent values of the spring constant. The curves are quitelcated, especially for smaller.
The curves for the large valye= 100 hardly dffer from welded contact(— ), but already = 10 gives relatively
large deviations, angl = 1 even more so, of course. However, the present model mayenealid as a model for

interface damage when= 1.

8. Concluding remarks

The main goal of the present paper is to investigate an atenvith damage. This damage is modeled as a random
distribution of small cracks of equal size. This model isth@nsformed into a spring boundary condition and a very
simple expression is obtained for the spring constant. Bleeofithis spring boundary condition is illustrated with the
dispersion curves for a two-layered plate with interfacedge.

While the derivation of the spring fithess is performed for normal incidence of a plane wave, ilaagible that
is a good approximation for any direction of incidence. la 8H case this has been demonstrated by Bostrom and
Kvasha [19] where the dispersion relation (where non-nbdinections are essential) in a layered plate with damage
modeled by spring boundary conditions (derived as here)meradic array of interface cracks (solved exactly as
here) are compared with a good correspondence.

The present methodology can be extended in several dinsctiBoth the 3D case and anisotropy are of interest
to make the spring boundary conditions for damage accesgibh wider range of problems. To investigate the
importance and detectability of damage in various situasti@pecific problems should be studied. This may be an

interface with only partial damage, damage in a layeredpkit.
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