147 research outputs found

    Hawks and Doves on Small-World Networks

    Get PDF
    We explore the Hawk-Dove game on networks with topologies ranging from regular lattices to random graphs with small-world networks in between. This is done by means of computer simulations using several update rules for the population evolutionary dynamics. We find the overall result that cooperation is sometimes inhibited and sometimes enhanced in those network structures, with respect to the mixing population case. The differences are due to different update rules and depend on the gain-to-cost ratio. We analyse and qualitatively explain this behavior by using local topological arguments.Comment: 12 pages, 8 figure

    Challenges in Evaluating Relationships Between Quantitative Data (Carbon Dioxide) and Qualitative Data (Self-Reported Visual Changes)

    Get PDF
    Understanding the nuances in clinical data is critical in developing a successful data analysis plan. Carbon dioxide (CO2) data are collected on board the International Space Station (ISS) in a continuous stream. Clinical data on ISS are primarily collected via conversations between individual crewmembers and NASA Flight Surgeons during weekly Private Medical Conferences (PMC). Law, et.al, 20141 demonstrated a statistically significant association between weekly average CO2 levels on ISS and self-reported headaches over the reporting period from March 14, 2001 to May 31, 2012. The purpose of this analysis is to describe the evaluation of a possible association between visual changes and CO2 levels on ISS and to discuss challenges in developing an appropriate analysis plan. METHODS & PRELIMINARY RESULTS: A first analysis was conducted following the same study design as the published work on CO2 and self-reported headaches1; substituting self-reported changes in visual acuity in place of self-reported headaches. The analysis demonstrated no statistically significant association between visual impairment characterized by vision symptoms self-reported during PMCs and ISS average CO2 levels over ISS missions. Closer review of the PMC records showed that vision outcomes are not well-documented in terms of clinical severity, timing of onset, or timing of resolution, perhaps due to the incipient nature of vision changes. Vision has been monitored in ISS crewmembers, pre- and post-flight, using standard optometry evaluations. In-flight visual assessments were limited early in the ISS program, primarily consisting of self-perceived changes reported by crewmembers. Recently, on-orbit capabilities have greatly improved. Vision data ranges from self-reported post-flight changes in visual acuity, pre- to postflight changes identified during fundoscopic examination, and in-flight progression measured by advanced on-orbit clinical imaging capabilities at predetermined testing intervals. In contrast, CO2 data are recorded in a continuous stream over time; however, for the initial analysis this data was categorized into weekly averages

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiXtiX_{t+dt}^i-X_t^i is approximately [xiμi+j(xjDjixiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and μi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiXtiX_{t+dt}^i-X_t^i and Xt+dtjXtjX_{t+dt}^j-X_t^j is approximately xixjσijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector YY_\infty as tt\to\infty, and the stochastic growth rate limtt1logSt\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of YY_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure

    Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    Get PDF
    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis

    Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    Get PDF
    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data

    Virus Replication Strategies and the Critical CTL Numbers Required for the Control of Infection

    Get PDF
    Vaccines that elicit protective cytotoxic T lymphocytes (CTL) may improve on or augment those designed primarily to elicit antibody responses. However, we have little basis for estimating the numbers of CTL required for sterilising immunity at an infection site. To address this we begin with a theoretical estimate obtained from measurements of CTL surveillance rates and the growth rate of a virus. We show how this estimate needs to be modified to account for (i) the dynamics of CTL-infected cell conjugates, and (ii) features of the virus lifecycle in infected cells. We show that provided the inoculum size of the virus is low, the dynamics of CTL-infected cell conjugates can be ignored, but knowledge of virus life-histories is required for estimating critical thresholds of CTL densities. We show that accounting for virus replication strategies increases estimates of the minimum density of CTL required for immunity over those obtained with the canonical model of virus dynamics, and demonstrate that this modeling framework allows us to predict and compare the ability of CTL to control viruses with different life history strategies. As an example we predict that lytic viruses are more difficult to control than budding viruses when net reproduction rates and infected cell lifetimes are controlled for. Further, we use data from acute SIV infection in rhesus macaques to calculate a lower bound on the density of CTL that a vaccine must generate to control infection at the entry site. We propose that critical CTL densities can be better estimated either using quantitative models incorporating virus life histories or with in vivo assays using virus-infected cells rather than peptide-pulsed targets

    The Evolutionary Dynamics of a Rapidly Mutating Virus within and between Hosts: The Case of Hepatitis C Virus

    Get PDF
    Many pathogens associated with chronic infections evolve so rapidly that strains found late in an infection have little in common with the initial strain. This raises questions at different levels of analysis because rapid within-host evolution affects the course of an infection, but it can also affect the possibility for natural selection to act at the between-host level. We present a nested approach that incorporates within-host evolutionary dynamics of a rapidly mutating virus (hepatitis C virus) targeted by a cellular cross-reactive immune response, into an epidemiological perspective. The viral trait we follow is the replication rate of the strain initiating the infection. We find that, even for rapidly evolving viruses, the replication rate of the initial strain has a strong effect on the fitness of an infection. Moreover, infections caused by slowly replicating viruses have the highest infection fitness (i.e., lead to more secondary infections), but strains with higher replication rates tend to dominate within a host in the long-term. We also study the effect of cross-reactive immunity and viral mutation rate on infection life history traits. For instance, because of the stochastic nature of our approach, we can identify factors affecting the outcome of the infection (acute or chronic infections). Finally, we show that anti-viral treatments modify the value of the optimal initial replication rate and that the timing of the treatment administration can have public health consequences due to within-host evolution. Our results support the idea that natural selection can act on the replication rate of rapidly evolving viruses at the between-host level. It also provides a mechanistic description of within-host constraints, such as cross-reactive immunity, and shows how these constraints affect the infection fitness. This model raises questions that can be tested experimentally and underlines the necessity to consider the evolution of quantitative traits to understand the outcome and the fitness of an infection
    corecore