10 research outputs found

    Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks

    Full text link
    In this paper we propose and investigate a novel nonlinear unit, called LpL_p unit, for deep neural networks. The proposed LpL_p unit receives signals from several projections of a subset of units in the layer below and computes a normalized LpL_p norm. We notice two interesting interpretations of the LpL_p unit. First, the proposed unit can be understood as a generalization of a number of conventional pooling operators such as average, root-mean-square and max pooling widely used in, for instance, convolutional neural networks (CNN), HMAX models and neocognitrons. Furthermore, the LpL_p unit is, to a certain degree, similar to the recently proposed maxout unit (Goodfellow et al., 2013) which achieved the state-of-the-art object recognition results on a number of benchmark datasets. Secondly, we provide a geometrical interpretation of the activation function based on which we argue that the LpL_p unit is more efficient at representing complex, nonlinear separating boundaries. Each LpL_p unit defines a superelliptic boundary, with its exact shape defined by the order pp. We claim that this makes it possible to model arbitrarily shaped, curved boundaries more efficiently by combining a few LpL_p units of different orders. This insight justifies the need for learning different orders for each unit in the model. We empirically evaluate the proposed LpL_p units on a number of datasets and show that multilayer perceptrons (MLP) consisting of the LpL_p units achieve the state-of-the-art results on a number of benchmark datasets. Furthermore, we evaluate the proposed LpL_p unit on the recently proposed deep recurrent neural networks (RNN).Comment: ECML/PKDD 201

    Exploring synergetic effects of dimensionality reduction and resampling tools on hyperspectral imagery data classification

    Get PDF
    The present paper addresses the problem of the classification of hyperspectral images with multiple imbalanced classes and very high dimensionality. Class imbalance is handled by resampling the data set, whereas PCA and a supervised filter are applied to reduce the number of spectral bands. This is a preliminary study that pursues to investigate the benefits of combining several techniques to tackle the imbalance and the high dimensionality problems, and also to evaluate the order of application that leads to the best classification performance. Experimental results demonstrate the significance of using together these two preprocessing tools to improve the performance of hyperspectral imagery classification. Although it seems that the most effective order corresponds to first a resampling strategy and then a feature (or extraction) selection algorithm, this is a question that still needs a much more thorough investigation in the futureThis work has partially been supported by the Spanish Ministry of Education and Science under grants CSD2007–00018, AYA2008–05965–0596 and TIN2009–14205, the Fundació Caixa Castelló–Bancaixa under grant P1–1B2009–04, and the Generalitat Valenciana under grant PROMETEO/2010/02

    Detection of cold chain breaks using partial least squares-class modelling based on biogenic amine profiles in tuna

    Get PDF
    The maintenance of the cold chain is essential to ensure foodstuff conformity and safety. However, gaps in the cold chain may be expected so designing analytical methods capable to detect cold chain breaks is a worthwhile issue. In this paper, the possibility of using the amount of nine biogenic amines (BAs) determined in Thunnus albacares by HPLC-FLD for detecting cold chain breaks is approached. Tuna is stored at 3 different temperature conditions for 8 storage periods. The evolution of the content of BAs is analyzed through parallel factor analysis (PARAFAC), in such a way that storage temperature, BAs and storage time profiles are estimated. PARAFAC has made it possible to observe two spoilage routes with different relative evolution of BAs. In addition, it has enabled to estimate the storage time, by considering the three storage temperatures, with errors of 0.5 and 1.0 days in fitting and in prediction, respectively. Furthermore, a class-modelling technique based on partial least squares is sequentially applied to decide, from the amount of BAs, if there has been a cold chain break. Firstly, samples stored at 25 °C are statistically discriminated from those kept at 4 °C and −18 °C; next, frozen samples are distinguished from those refrigerated. In the first case, the probabilities of false non-compliance and false compliance are almost zero, whereas in the second one, both probabilities are 10%. Globally, the results of this work have pointed out the feasibility of using the amount of BAs together with PLS-CM to decide if the cold chain has been maintained or not.Agencia Estatal de Investigación of Spanish Ministerio de Economía, Industria y Competitividad, Gobierno de España [project CTQ2017-88894-R] and Consejería de Educación de la Junta de Castilla y León [project BU012P17] both co-financed with European Regional Development Fun

    RFID from Farm to Fork: Traceability along the complete food chain

    No full text
    The project "RFID from Farm to Fork" looks for the extension of RFID technologies along the complete food chain: from the farms where cows, fishes, sheep, grapes, etc. grow; to the final consumer at the supermarkets, including all intermediate stages: transports, factory processes, storage. The paper is intended to show the project objectives and concerns, as well as it highlights the main radio propagation problems detected within a RFID system installed in a food factory. The paper also shows a proposal of using RFID traceability in different study cases
    corecore