360 research outputs found

    EMBRACE@Nancay: An Ultra Wide Field of View Prototype for the SKA

    Full text link
    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the "intensity mapping" experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.Comment: to appear in proceedings of the INFIERI Summer School INtelligent Signal Processing for FrontIEr Research and Industry, Paris 201

    Characterization of a dense aperture array for radio astronomy

    Get PDF
    EMBRACE@Nancay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an extremely large field of view making it the ideal survey instrument. We describe the system,calibration procedures, and results from the prototype.Comment: 17 pages, accepted for publication in A&

    Plasma Liquid Crystal by Needle Shape of Particle in Gas Discharge

    Full text link

    α\alpha-Scale Decoupling of the Mechanical Relaxation and Diverging Shear Wave Propagation Lengthscale in Triphenylphosphite

    Full text link
    We have performed depolarized Impulsive Stimulated Scattering experiments to observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from ∌\sim10 - 500 MHz. These measurements, in tandem with previously performed longitudinal and shear measurements, permit further analyses of the relaxation dynamics of TPP within the framework of the mode coupling theory (MCT). Our results provide evidence of α\alpha coupling between the shear and longitudinal degrees of freedom up to a decoupling temperature TcT_c = 231 K. A lower bound length scale of shear wave propagation in liquids verified the exponent predicted by theory in the vicinity of the decoupling temperature

    Second-harmonic generation in the topological multifold semimetal RhSi

    Get PDF
    Recent experiments in the topological Weyl semimetal TaAs have observed record-breaking second-harmonic generation (SHG), a nonlinear optical response at 2? generated by an incoming light source at ?. However, whether SHG is enhanced in topological semimetals in general is a challenging open question because their band structure entangles the contributions arising from trivial bands and topological band crossings. In this work, we circumvent this problem by studying RhSi, a chiral topological semimetal with a simple band structure with topological multifold fermions close to the Fermi energy. We measure SHG in a wide frequency window, ? [0.27,1.5]eV and, using first-principles calculations, we establish that, due to their linear dispersion, the contribution of multifold fermions to SHG is subdominant as compared with other regions in the Brillouin zone. Our calculations suggest that parts of the bands where the dispersion is relatively flat contribute significantly to SHG. As a whole, our results suggest avenues to enhance SHG responses. © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates

    Stress distribution and the fragility of supercooled melts

    Full text link
    We formulate a minimal ansatz for local stress distribution in a solid that includes the possibility of strongly anharmonic short-length motions. We discover a broken-symmetry metastable phase that exhibits an aperiodic, frozen-in stress distribution. This aperiodic metastable phase is characterized by many distinct, nearly degenerate configurations. The activated transitions between the configurations are mapped onto the dynamics of a long range classical Heisenberg model with 6-component spins and anisotropic couplings. We argue the metastable phase corresponds to a deeply supercooled non-polymeric, non-metallic liquid, and further establish an order parameter for the glass-to-crystal transition. The spin model itself exhibits a continuous range of behaviors between two limits corresponding to frozen-in shear and uniform compression/dilation respectively. The two regimes are separated by a continuous transition controlled by the anisotropy in the spin-spin interaction, which is directly related to the Poisson ratio σ\sigma of the material. The latter ratio and the ultra-violet cutoff of the theory determine the liquid configurational entropy. Our results suggest that liquid's fragility depends on the Poisson ratio in a non-monotonic way. The present ansatz provides a microscopic framework for computing the configurational entropy and relaxational spectrum of specific substances.Comment: 11 pages, 5 figures, Final version published in J Phys Chem

    Nonlinear high-temperature superconducting terahertz metamaterials

    Get PDF
    We report the observation of a nonlinear terahertz response of split-ring resonator arrays made of high-temperature superconducting films. Intensity-dependent transmission measurements indicate that the resonance strength decreases dramatically (i.e. transient bleaching) and the resonance frequency shifts as the intensity is increased. Pump–probe measurements confirm this behaviour and reveal dynamics on the few-picosecond timescale.Los Alamos National Laboratory. Laboratory Directed Research and Development ProgramUnited States. Office of Naval Research (Grant N00014-09-1-1103)National Science Foundation (U.S.) (American Competitiveness in Chemistry Fellowship 1041979
    • 

    corecore