Abstract

We formulate a minimal ansatz for local stress distribution in a solid that includes the possibility of strongly anharmonic short-length motions. We discover a broken-symmetry metastable phase that exhibits an aperiodic, frozen-in stress distribution. This aperiodic metastable phase is characterized by many distinct, nearly degenerate configurations. The activated transitions between the configurations are mapped onto the dynamics of a long range classical Heisenberg model with 6-component spins and anisotropic couplings. We argue the metastable phase corresponds to a deeply supercooled non-polymeric, non-metallic liquid, and further establish an order parameter for the glass-to-crystal transition. The spin model itself exhibits a continuous range of behaviors between two limits corresponding to frozen-in shear and uniform compression/dilation respectively. The two regimes are separated by a continuous transition controlled by the anisotropy in the spin-spin interaction, which is directly related to the Poisson ratio σ\sigma of the material. The latter ratio and the ultra-violet cutoff of the theory determine the liquid configurational entropy. Our results suggest that liquid's fragility depends on the Poisson ratio in a non-monotonic way. The present ansatz provides a microscopic framework for computing the configurational entropy and relaxational spectrum of specific substances.Comment: 11 pages, 5 figures, Final version published in J Phys Chem

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019