23 research outputs found

    Rapid intrapartum test for maternal group B streptococcal colonisation and its effect on antibiotic use in labouring women with risk factors for early-onset neonatal infection (GBS2): cluster randomised trial with nested test accuracy study

    Get PDF
    Background: Mother-to-baby transmission of group B Streptococcus (GBS) is the main cause of early-onset infection. We evaluated whether, in women with clinical risk factors for early neonatal infection, the use of point-of-care rapid intrapartum test to detect maternal GBS colonisation reduces maternal antibiotic exposure compared with usual care, where antibiotics are administered due to those risk factors. We assessed the accuracy of the rapid test in diagnosing maternal GBS colonisation, against the reference standard of selective enrichment culture. Methods: We undertook a parallel-group cluster randomised trial, with nested test accuracy study and microbiological sub-study. UK maternity units were randomised to a strategy of rapid test (GeneXpert GBS system, Cepheid) or usual care. Within units assigned to rapid testing, vaginal-rectal swabs were taken from women with risk factors for vertical GBS transmission in established term labour. The trial primary outcome was the proportion of women receiving intrapartum antibiotics to prevent neonatal early-onset GBS infection. The accuracy of the rapid test was compared against the standard of selective enrichment culture in diagnosing maternal GBS colonisation. Antibiotic resistance profiles were determined in paired maternal and infant samples. Results: Twenty-two maternity units were randomised and 20 were recruited. A total of 722 mothers (749 babies) participated in rapid test units; 906 mothers (951 babies) were in usual care units. There was no evidence of a difference in the rates of intrapartum antibiotic prophylaxis (relative risk 1.16, 95% CI 0.83 to 1.64) between the rapid test (41%, 297/716) and usual care (36%, 328/906) units. No serious adverse events were reported. The sensitivity and specificity measures of the rapid test were 86% (95% CI 81 to 91%) and 89% (95% CI 85 to 92%), respectively. Babies born to mothers who carried antibiotic-resistant Escherichia coli were more likely to be colonised with antibiotic-resistant strains than those born to mothers with antibiotic-susceptible E. coli. Conclusion: The use of intrapartum rapid test to diagnose maternal GBS colonisation did not reduce the rates of antibiotics administered for preventing neonatal early-onset GBS infection than usual care, although with considerable uncertainty. The accuracy of the rapid test is within acceptable limits. Trial registration: ISRCTN74746075. Prospectively registered on 16 April 2015

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis thaliana

    No full text
    Proteogenic dipeptides are intermediates of proteolysis as well as an emerging class of small-molecule regulators with diverse and often dipeptide-specific functions. Herein, prompted by differential accumulation of dipeptides in a high-density Arabidopsis thaliana time-course stress experiment, we decided to pursue an identity of the proteolytic pathway responsible for the buildup of dipeptides under heat conditions. By querying dipeptide accumulation versus available transcript data, autophagy emerged as a top hit. To examine whether autophagy indeed contributes to the accumulation of dipeptides measured in response to heat stress, we characterized the loss-of-function mutants of crucial autophagy proteins to test whether interfering with autophagy would affect dipeptide accumulation in response to the heat treatment. This was indeed the case. This work implicates the involvement of autophagy in the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis

    Synthesis and characterization of cobalt (II), nickel (II) and copper (II) bis-chelates and mixed-ligand complexes of <img src='/image/spc_char/alpha.gif' border=0>-(2-hydroxyphenyl)-N-( 2-nitrocyclohexyl)nitrone</span>

    No full text
    720-722Complexes of the type MA2.2H2O and CuAL.2H2O [where AH = -(2-hydroxyphenyl)-N-(2-nitrocyclohexyl)nitrone, M= cobalt (II)/ nickel (II)/ copper (II) and LH = salicylaldehyde/salicylaldoximel /8- hydroxyquinoline/2-hydroxypyridine] have been synthesised and characterised on the basis of elemental analysis, spectral, magnetic and thermal studies. All these dihydrates possess normal magnetic moments and their ligand field spectra and thermal studies suggest an octahedral geometry for these complexes

    Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery

    No full text
    Moderate and temporary heat stresses (HS) prime plants to tolerate, and survive, a subsequent severe HS. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and create a HS memory. We recently demonstrated that plastid-localized small heat shock protein HSP21 is a key component of HS memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the HS recovery phase extends HS memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during HS recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both, metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with HS memory. ATI1 bodies colocalize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during HS recovery. Together, our results provide new insights into the control module for the regulation of HS memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the HS effect at the cost of reducing the HS memory

    Rewiring of the protein–protein–metabolite interactome during the diauxic shift in yeast

    No full text
    In budding yeast Saccharomyces cerevisiae, the switch from aerobic fermentation to respiratory growth is separated by a period of growth arrest, known as the diauxic shift, accompanied by a significant metabolic rewiring, including the derepression of gluconeogenesis and the establishment of mitochondrial respiration. Previous studies reported hundreds of proteins and tens of metabolites accumulating differentially across the diauxic shift transition. To assess the differences in the protein–protein (PPIs) and protein–metabolite interactions (PMIs) yeast samples harvested in the glucose-utilizing, fermentative phase, ethanol-utilizing and early stationary respiratory phases were analysed using isothermal shift assay (iTSA) and a co-fractionation mass spectrometry approach, PROMIS. Whereas iTSA monitors changes in protein stability and is informative towards protein interaction status, PROMIS uses co-elution to delineate putative PPIs and PMIs. The resulting dataset comprises 1627 proteins and 247 metabolites, hundreds of proteins and tens of metabolites characterized by differential thermal stability and/or fractionation profile, constituting a novel resource to be mined for the regulatory PPIs and PMIs. The examples discussed here include (i) dissociation of the core and regulatory particle of the proteasome in the early stationary phase, (ii) the differential binding of a co-factor pyridoxal phosphate to the enzymes of amino acid metabolism and (iii) the putative, phase-specific interactions between proline-containing dipeptides and enzymes of central carbon metabolism

    Multifaceted regulatory function of tomato SlTAF1 in the response to salinity stress

    No full text
    Abstract Salinity stress limits plant growth and has a major impact on agricultural productivity. Here, we identify NAC transcription factor SlTAF1 as a regulator of salt tolerance in cultivated tomato (Solanum lycopersicum). While overexpressing SlTAF1 improves salinity tolerance compared to wild type, lowering SlTAF1 expression causes stronger salinity-induced damage. Under salt stress, shoots of SlTAF1 knockdown plants accumulate more toxic Na+ ions, while SlTAF1 overexpressors accumulate less, in accordance with an altered expression of the Na+ transporter genes SlHKT1;1 and SlHKT1;2. Furthermore, stomatal conductance and pore area are increased in SlTAF1 knockdown plants during salinity stress, but decreased in SlTAF1 overexpressors. We identified stress-related transcription factor, ABA metabolism, and defense-related genes as potential direct targets of SlTAF1, correlating it with reactive oxygen species (ROS) scavenging capacity and changes in hormonal response. Salinity-induced changes in tricarboxylic acid cycle intermediates and amino acids are more pronounced in SlTAF1 knockdown than wild-type plants, but less so in SlTAF1 overexpressors. The osmoprotectant proline accumulates more in SlTAF1 overexpressors than knockdown plants. In summary, SlTAF1 controls tomato's response to salinity stress by combating both, osmotic and ion toxicity, highlighting it as a promising candidate for the future breeding of stress-tolerant crops
    corecore