1,390 research outputs found

    NIEL Dose Dependence for Solar Cells Irradiated with Electrons and Protons

    Full text link
    The investigation of solar cells degradation and the prediction of its end-of-life performance is of primary importance in the preparation of a space mission. In the present work, we investigate the reduction of solar-cells' maximum power resulting from irradiations with electrons and protons. Both GaAs single junction and GaInP/GaAs/Ge triple junction solar cells were studied. The results obtained indicate how i) the dominant radiation damaging mechanism is due to atomic displacements, ii) the relative maximum power degradation is almost independent of the type of incoming particle, i.e., iii) to a first approximation, the fitted semi-empirical function expressing the decrease of maximum power depends only on the absorbed NIEL dose, and iv) the actual displacement threshold energy value (Ed=21 eV) accounts for annealing treatments, mostly due to self-annealing induced effects. Thus, for a given type of solar cell, a unique maximum power degradation curve can be determined as a function of the absorbed NIEL dose. The latter expression allows one to predict the performance of those solar cells in space radiation environment.Comment: To appear on the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo (Como, Italy), 23--27 October, 2013, to be published by World Scientific (Singapore

    A multi-wavelength study of the peculiar galaxy NGC 2976

    Get PDF
    Researchers are currently studying NGC 2976 at many wavelengths to investigate the extent to which an interaction with M81 may have affected the star formation history of this galaxy. Here, researchers present observations of NGC 2976 made at 50 microns with the high resolution (CPC) instrument onboard Infrared Astronomy Satellite (IRAS) at 21-cm (both HI line and radio continuum) with the Westerbork Synthesis Radio Telescope (WSRT) and in the H alpha line with the Kitt Peak National Observatory (KPNO) 36 inch telescope. The far infrared emission is not centrally peaked as in other spirals (e.g., Wainscoat et al. 1987), but has obvious intensity peaks near the ends of the disk. The ionized gas as inferred from the H alpha observations, is largely confined to two large, symmetrically placed emission regions near the ends of the disk. Finally, the HI and 21-cm radio continuum emission also exhibit this strongly double-peaked structure. At all of the above wavelengths the emission peaks are roughly coincident and lie approx. 1.2 minutes to the NW and approx. 1.1 minutes to the SE of the optical center of this galaxy

    Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    Full text link
    (Abridged) Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broad band spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and a modified black body (MBB). As long as the observed SED extends to at least 160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1. At higher redshift (z<=2) the same result is achieved only for objects at the tip of the MS or lying above it. Molecular gas masses, obtained converting M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are consistent with those based on the scaling of depletion time, and on CO spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR) dependence on metallicity is consistent with the local relation. We combine far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures have degraded quality for filesize reason

    ALFA & 3D: integral field spectroscopy with adaptive optics

    Full text link
    One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26". The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2"x1.2" and 4"x4", depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.Comment: SPIE meeting 4007 on Adaptive Optical Systems Technology, March 200

    Dense Molecular Gas and the Role of Star Formation in the Host Galaxies of Quasi-Stellar Objects

    Get PDF
    New millimeter-wave CO and HCN observations of the host galaxies of infrared-excess Palomar Green quasi-stellar objects (PG QSOs) previously detected in CO are presented. These observations are designed to assess the validity of using the infrared luminosity to estimate star formation rates of luminous AGN by determining the relative significance of dust-heating by young, massive stars and active galactic nuclei (AGN) in QSO hosts and IRAS galaxies with warm, AGN-like infrared colors. The HCN data show the PG QSO host IZw1 and most of the warm IRAS galaxies to have high L_IR / L'_HCN (>1600) relative to the cool IRAS galaxy population for which the median L_IR / L'_HCN ~ 890(+440,-470). If the assumption is made that the infrared emission from cool IRAS galaxies is reprocessed light from embedded star-forming regions, then high values of L_IR / L'_HCN are likely the result of dust heating by the AGN. Further, if the median ratio of L'_HCN / L'_CO ~ 0.06 observed for Seyfert galaxies and IZw1 is applied to the PG QSOs not detected in HCN, then the derived L_IR / L'_HCN correspond to a stellar contribution to the production of L_IR of ~ 7-39%, and star formation rates ~ 2-37 M_sun/yr are derived for the QSO hosts. Alternatively, if the far-infrared is adopted as the star formation component of the total infrared in cool galaxies, the stellar contributions in QSO hosts to their L_FIR are up to 35% higher than the percentages derived for L_IR. This raises the possibility that the L_FIR in several of the PG QSO hosts, including IZw1, could be due entirely to dust heated by young, massive stars. Finally, there is no evidence that the global HCN emission is enhanced relative to CO in galaxies hosting luminous AGN.Comment: LaTex, 31 pages, including 9 postscript figures, AJ, in press (December 2006

    Low, Milky-Way like, Molecular Gas Excitation of Massive Disk Galaxies at z~1.5

    Full text link
    We present evidence for Milky-Way-like, low-excitation molecular gas reservoirs in near-IR selected massive galaxies at z~1.5, based on IRAM Plateau de Bure Interferometer CO[3-2] and NRAO Very Large Array CO[1-0] line observations for two galaxies that had been previously detected in CO[2-1] emission. The CO[3-2] flux of BzK-21000 at z=1.522 is comparable within the errors to its CO[2-1] flux, implying that the CO[3-2] transition is significantly sub-thermally excited. The combined CO[1-0] observations of the two sources result in a detection at the 3 sigma level that is consistent with a higher CO[1-0] luminosity than that of CO[2-1]. Contrary to what is observed in submillimeter galaxies and QSOs, in which the CO transitions are thermally excited up to J>=3, these galaxies have low-excitation molecular gas, similar to that in the Milky Way and local spirals. This is the first time that such conditions have been observed at high redshift. A Large Velocity Gradient analysis suggests that molecular clouds with density and kinetic temperature comparable to local spirals can reproduce our observations. The similarity in the CO excitation properties suggests that a high, Milky-Way-like, CO to H_2 conversion factor could be appropriate for these systems. If such low-excitation properties are representative of ordinary galaxies at high redshift, centimeter telescopes such as the Expanded Very Large Array and the longest wavelength Atacama Large Millimeter Array bands will be the best tools for studying the molecular gas content in these systems through the observations of CO emission lines.Comment: 5 pages, 4 figures. ApJ Letters in pres
    corecore