3,190 research outputs found

    Dichotomous Hamiltonians with Unbounded Entries and Solutions of Riccati Equations

    Full text link
    An operator Riccati equation from systems theory is considered in the case that all entries of the associated Hamiltonian are unbounded. Using a certain dichotomy property of the Hamiltonian and its symmetry with respect to two different indefinite inner products, we prove the existence of nonnegative and nonpositive solutions of the Riccati equation. Moreover, conditions for the boundedness and uniqueness of these solutions are established.Comment: 31 pages, 3 figures; proof of uniqueness of solutions added; to appear in Journal of Evolution Equation

    PD-1<sup>+</sup> Tcf1<sup>+</sup> CD8<sup>+</sup> T cells from established chronic infection can form memory while retaining a stableimprint of persistent antigen exposure.

    Get PDF
    Virus-specific PD1 &lt;sup&gt;+&lt;/sup&gt; Tcf1 &lt;sup&gt;+&lt;/sup&gt; memory-like CD8 &lt;sup&gt;+&lt;/sup&gt; T cells (T &lt;sub&gt;ML&lt;/sub&gt; s) maintain the CD8 &lt;sup&gt;+&lt;/sup&gt; T cell response during chronic viral infection. However, the fate of these cells following cessation of persistent antigen exposure has been unclear. Here, we find that T &lt;sub&gt;ML&lt;/sub&gt; s persist upon transfer into antigen-free hosts and form memory following recall stimulation. Phenotypic, functional, and transcriptome analyses show that T &lt;sub&gt;ML&lt;/sub&gt; -derived memory cells resemble those arising in response to acute, resolved infection, but they retain features of chronically stimulated cells, including elevated PD-1 and Tox and reduced cytokine expression. This chronic infection imprint is largely accounted for by constitutive Tox expression. Virus-specific Tcf1 &lt;sup&gt;+&lt;/sup&gt; CD8 &lt;sup&gt;+&lt;/sup&gt; T cells that persist after clearance of systemic infection also display a chronic infection imprint. Notwithstanding, renewed virus exposure induces a recall response, which controls virus infection in part. Thus, cessation of chronic antigen exposure yields a memory CD8 &lt;sup&gt;+&lt;/sup&gt; T cell compartment that reflects prior stimulation

    Generation of Porous Particle Structures using the Void Expansion Method

    Full text link
    The newly developed "void expansion method" allows for an efficient generation of porous packings of spherical particles over a wide range of volume fractions using the discrete element method. Particles are randomly placed under addition of much smaller "void-particles". Then, the void-particle radius is increased repeatedly, thereby rearranging the structural particles until formation of a dense particle packing. The structural particles' mean coordination number was used to characterize the evolving microstructures. At some void radius, a transition from an initially low to a higher mean coordination number is found, which was used to characterize the influence of the various simulation parameters. For structural and void-particle stiffnesses of the same order of magnitude, the transition is found at constant total volume fraction slightly below the random close packing limit. For decreasing void-particle stiffness the transition is shifted towards a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure

    Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes

    Get PDF
    The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify the entry of these vortices as a function of applied magnetic field and show that they mark the nucleation of magnetization reversal. We find that the entry field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end vortex formation enabled by our findings is promising for the production of FNTs with tailored reversal properties.Comment: 20 pages, 13 figure

    Characterization of the blood-brain barrier in genetically diverse laboratory mouse strains.

    Get PDF
    Genetic variation in a population has an influence on the manifestation of monogenic as well as multifactorial disorders, with the underlying genetic contribution dependent on several interacting variants. Common laboratory mouse strains used for modelling human disease lack the genetic variability of the human population. Therefore, outcomes of rodent studies show limited relevance to human disease. The functionality of brain vasculature is an important modifier of brain diseases. Importantly, the restrictive interface between blood and brain-the blood-brain barrier (BBB) serves as a major obstacle for the drug delivery into the central nervous system (CNS). Using genetically diverse mouse strains, we aimed to investigate the phenotypic and transcriptomic variation of the healthy BBB in different inbred mouse strains. We investigated the heterogeneity of brain vasculature in recently wild-derived mouse strains (CAST/EiJ, WSB/EiJ, PWK/PhJ) and long-inbred mouse strains (129S1/SvImJ, A/J, C57BL/6J, DBA/2J, NOD/ShiLtJ) using different phenotypic arms. We used immunohistochemistry and confocal laser microscopy followed by quantitative image analysis to determine vascular density and pericyte coverage in two brain regions-cortex and hippocampus. Using a low molecular weight fluorescence tracer, sodium fluorescein and spectrophotometry analysis, we assessed BBB permeability in young and aged mice of selected strains. For further phenotypic characterization of endothelial cells in inbred mouse strains, we performed bulk RNA sequencing of sorted endothelial cells isolated from cortex and hippocampus. Cortical vessel density and pericyte coverage did not differ among the investigated strains, except in the cortex, where PWK/PhJ showed lower vessel density compared to NOD/ShiLtJ, and a higher pericyte coverage than DBA/2J. The vascular density in the hippocampus differed among analyzed strains but not the pericyte coverage. The staining patterns of endothelial arteriovenous zonation markers were similar in different strains. BBB permeability to a small fluorescent tracer, sodium fluorescein, was also similar in different strains, except in the hippocampus where the CAST/EiJ showed higher permeability than NOD/ShiLtJ. Transcriptomic analysis of endothelial cells revealed that sex of the animal was a major determinant of gene expression differences. In addition, the expression level of several genes implicated in endothelial function and BBB biology differed between wild-derived and long-inbred mouse strains. In aged mice of three investigated strains (DBA/2J, A/J, C57BL/6J) vascular density and pericyte coverage did not change-expect for DBA/2J, whereas vascular permeability to sodium fluorescein increased in all three strains. Our analysis shows that although there were no major differences in parenchymal vascular morphology and paracellular BBB permeability for small molecular weight tracer between investigated mouse strains or sexes, transcriptomic differences of brain endothelial cells point to variation in gene expression of the intact BBB. These baseline variances might be confounding factors in pathological conditions that may lead to a differential functional outcome dependent on the sex or genetic polymorphism

    Can Action Research Strengthen District Health Management and Improve Health Workforce Performance? A Research Protocol.

    Get PDF
    The single biggest barrier for countries in sub-Saharan Africa (SSA) to scale up the necessary health services for addressing the three health-related Millennium Development Goals and achieving Universal Health Coverage is the lack of an adequate and well-performing health workforce. This deficit needs to be addressed both by training more new health personnel and by improving the performance of the existing and future health workforce. However, efforts have mostly been focused on training new staff and less on improving the performance of the existing health workforce. The purpose of this paper is to disseminate the protocol for the PERFORM project and reflect on the key challenges encountered during the development of this methodology and how they are being overcome. The overall aim of the PERFORM project is to identify ways of strengthening district management in order to address health workforce inadequacies by improving health workforce performance in SSA. The study will take place in three districts each in Ghana, Tanzania and Uganda using an action research approach. With the support of the country research teams, the district health management teams (DHMTs) will lead on planning, implementation, observation, reflection and redefinition of the activities in the study. Taking into account the national and local human resource (HR) and health systems (HS) policies and practices already in place, 'bundles' of HR/HS strategies that are feasible within the context and affordable within the districts' budget will be developed by the DHMTs to strengthen priority areas of health workforce performance. A comparative analysis of the findings from the three districts in each country will add new knowledge on the effects of these HR/HS bundles on DHMT management and workforce performance and the impact of an action research approach on improving the effectiveness of the DHMTs in implementing these interventions. Different challenges were faced during the development of the methodology. These include the changing context in the study districts, competing with other projects and duties for the time of district managers, complexity of the study design, maintaining the anonymity and confidentiality of study participants as well as how to record the processes during the study. We also discuss how these challenges are being addressed. The dissemination of this research protocol is intended to generate interest in the PERFORM project and also stimulate discussion on the use of action research in complex studies such as this on strengthening district health management to improve health workforce performance

    The Influence of the Degree of Heterogeneity on the Elastic Properties of Random Sphere Packings

    Full text link
    The macroscopic mechanical properties of colloidal particle gels strongly depend on the local arrangement of the powder particles. Experiments have shown that more heterogeneous microstructures exhibit up to one order of magnitude higher elastic properties than their more homogeneous counterparts at equal volume fraction. In this paper, packings of spherical particles are used as model structures to computationally investigate the elastic properties of coagulated particle gels as a function of their degree of heterogeneity. The discrete element model comprises a linear elastic contact law, particle bonding and damping. The simulation parameters were calibrated using a homogeneous and a heterogeneous microstructure originating from earlier Brownian dynamics simulations. A systematic study of the elastic properties as a function of the degree of heterogeneity was performed using two sets of microstructures obtained from Brownian dynamics simulation and from the void expansion method. Both sets cover a broad and to a large extent overlapping range of degrees of heterogeneity. The simulations have shown that the elastic properties as a function of the degree of heterogeneity are independent of the structure generation algorithm and that the relation between the shear modulus and the degree of heterogeneity can be well described by a power law. This suggests the presence of a critical degree of heterogeneity and, therefore, a phase transition between a phase with finite and one with zero elastic properties.Comment: 8 pages, 6 figures; Granular Matter (published online: 11. February 2012

    Global nuclear structure effects of tensor interaction

    Full text link
    A direct fit of the isoscalar spin-orbit (SO) and both isoscalar and isovector tensor coupling constants to the f5/2-f7/2 SO splittings in 40Ca, 56Ni, and 48Ca nuclei requires a drastic reduction of the isoscalar SO strength and strong attractive tensor coupling constants. The aim of this work is to address further consequences of these strong attractive tensor and weak SO fields on binding energies, nuclear deformability, and high-spin states. In particular, we show that contribution to the nuclear binding energy due to the tensor field shows generic magic structure with tensorial magic numbers at N(Z)=14, 32, 56, or 90 corresponding to the maximum spin-asymmetries in 1d5/2, 1f7/2-2p3/2, 1g9/2-2d5/2 and 1h11/2-2f7/2 single-particle configurations and that these numbers are smeared out by pairing correlations and deformation effects. We also examine the consequences of strong attractive tensor fields and weak SO interaction on nuclear stability at the drip lines, in particular close to the tensorial doubly magic nuclei and discuss the possibility of an entirely new tensor-force driven deformation effect.Comment: replaced with published versio

    Shape and blocking effects on odd-even mass differences and rotational motion of nuclei

    Get PDF
    Nuclear shapes and odd-nucleon blockings strongly influence the odd-even differences of nuclear masses. When such effects are taken into account, the determination of the pairing strength is modified resulting in larger pair gaps. The modified pairing strength leads to an improved self-consistent description of moments of inertia and backbending frequencies, with no additional parameters.Comment: 7 pages, 3 figures, subm to PR

    Left bundle branch block causes relative but not absolute septal underperfusion during exercise

    Get PDF
    Aims Left bundle branch block (LBBB) often causes septal perfusion defects in radionuclide myocardial perfusion imaging using exercise (Ex) but rarely using vasodilator stress. We studied whether this is due to an underlying structural disease inherent to spontaneous LBBB or whether it is also found in temporary LBBB induced by right ventricular pacing (PM) indicating a functional rather than a structural alteration. Methods and results Regional myocardial blood flow (MBF) at rest and at Ex was measured with(15)O-H(2)O and PET in 10 age-matched healthy volunteers (controls), 10 LBBB patients and 10 PM patients with right ventricular pacing off and on (PM off and PM on). Although at Ex septal MBF tended to be higher in LBBB than in controls (3.04 +/- 1.18 vs. 2.27 +/- 0.72 mL/min/g; P= ns), the ratio septal/lateral MBF was 19% lower in LBBB than in controls (P < 0.05). Similarly, switching PM on at Ex decreased the ratio septal/lateral MBF by 17% (P < 0.005). Conclusion The apparent septal perfusion defect in LBBB is mainly due to a relative lateral hyperperfusion rather than to an absolute septal flow decrease. This pattern seems to be reversibly inducible by right ventricular pacing, suggesting a functional rather than a structural alteratio
    corecore