117,143 research outputs found
Wave propagation in graphite/epoxy laminates due to impact
The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity
Recommended from our members
Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home
Extreme weather events become more frequent and severe due to climate change. Although energy efficiency technologies can influence thermal resilience of buildings, they are traditionally studied separately, and their interconnections are rarely quantified. This study developed a methodology of modeling and analysis to provide insights into the nexus of thermal resilience and energy efficiency of buildings. We conducted a case study of a real nursing home in Florida, where 12 patients died during Hurricane Irma in 2017 due to HVAC system power loss, to understand and quantify how passive and active energy efficiency measures (EEMs) can improve thermal resilience to reduce heat-exposure risk of patients. Results show that passive measures of opening windows and doors for natural ventilation, as well as miscellaneous load reduction, are very effective in eliminating the extreme dangerous occasions. However, to maintain safe conditions, active measures such as on-site power generators and thermal storage are also needed. The nursing home was further studied by changing its location to two other cities: San Francisco (mild climate) and Chicago (cold winter and hot summer). Results revealed that the EEMs' impacts on thermal resilience vary significantly by climate and building characteristics. The study also estimated the costs of EEMs to help stakeholders prioritize the measures. Passive measures that may not save energy may greatly improve thermal resilience, and thus should be considered in building design or retrofit. Findings from this study indicate energy efficiency technologies should be evaluated not only by their energy savings performance but also by their influence on a building's resilience to extreme weather events
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Recommended from our members
Fast response time fiber optical pH and oxygen sensors
While fluorescence-based fiber optic sensors for measuring both pH and oxygen concentration (O2) are well known, current sensors are often limited by their response time and drift, which limits the use of existing fiber optic sensors of this type in wider applications, for example in physiology and other fields. Several new fiber optical sensors have been developed and optimized, with respect to key features such as tip shape and coating layer thickness. In this work, preliminary results on the performance of a suite of pH sensors with fast response times, < 3 second and oxygen sensors (O2) with response times < 0.2 second. The sensors have been calibrated and their performance analyzed using the Henderson–Hasselbalch equation (pH) and classic Lehrer-model (O2)
- …