80,237 research outputs found
Optimal Controlled Teleportation
We give the analytic expressions of maximal probabilities of successfully
controlled teleportating an unknown qubit via every kind of tripartite states.
Besides, another kind of localizable entanglement is also determined.
Furthermore, we give the sufficient and necessary condition that a three-qubit
state can be collapsed to an EPR pair by a measurement on one qubit, and
characterize the three-qubit states that can be used as quantum channel for
controlled teleporting a qubit of unknown information with unit probability and
with unit fidelity.Comment: 4 page
A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties
We propose a simultaneous quantum secure direct communication scheme between
one party and other three parties via four-particle GHZ states and swapping
quantum entanglement. In the scheme, three spatially separated senders, Alice,
Bob and Charlie, transmit their secret messages to a remote receiver Diana by
performing a series local operations on their respective particles according to
the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell
measurement results, Diana can infer the secret messages. If a perfect quantum
channel is used, the secret messages are faithfully transmitted from Alice, Bob
and Charlie to Diana via initially shared pairs of four-particle GHZ states
without revealing any information to a potential eavesdropper. As there is no
transmission of the qubits carrying the secret message in the public channel,
it is completely secure for the direct secret communication. This scheme can be
considered as a network of communication parties where each party wants to
communicate secretly with a central party or server.Comment: 4 pages, no figur
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
On the Triality Theory for a Quartic Polynomial Optimization Problem
This paper presents a detailed proof of the triality theorem for a class of
fourth-order polynomial optimization problems. The method is based on linear
algebra but it solves an open problem on the double-min duality left in 2003.
Results show that the triality theory holds strongly in a tri-duality form if
the primal problem and its canonical dual have the same dimension; otherwise,
both the canonical min-max duality and the double-max duality still hold
strongly, but the double-min duality holds weakly in a symmetrical form. Four
numerical examples are presented to illustrate that this theory can be used to
identify not only the global minimum, but also the largest local minimum and
local maximum.Comment: 16 pages, 1 figure; J. Industrial and Management Optimization, 2011.
arXiv admin note: substantial text overlap with arXiv:1104.297
Interacting Fermi Gases in Disordered One-Dimensional Lattices
Interacting two-component Fermi gases loaded in a one-dimensional (1D)
lattice and subject to harmonic trapping exhibit intriguing compound phases in
which fluid regions coexist with local Mott-insulator and/or band-insulator
regions. Motivated by experiments on cold atoms inside disordered optical
lattices, we present a theoretical study of the effects of a random potential
on these ground-state phases. Within a density-functional scheme we show that
disorder has two main effects: (i) it destroys the local insulating regions if
it is sufficiently strong compared with the on-site atom-atom repulsion, and
(ii) it induces an anomaly in the compressibility at low density from quenching
of percolation.Comment: 7 pages, 4 figures, submitte
An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis
The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the field of ANN weight training. This study applied a new efficient and effective Shuffled Complex Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI algorithm possesses good potential in support of the weight training of ANN in real-word problems. In addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison experiments conducted in this paper are fundamental references for selecting proper ANN weight training algorithms in practice
Modeling the Optical Afterglow of GRB 030329
The best-sampled afterglow light curves are available for GRB 030329. A
distinguishing feature of this event is the obvious rebrightening at around 1.6
days after the burst. Proposed explanations for the rebrightening mainly
include the two-component jet model and the refreshed shock model, although a
sudden density-jump in the circumburst environment is also a potential choice.
Here we re-examine the optical afterglow of GRB 030329 numerically in light of
the three models. In the density-jump model, no obvious rebrightening can be
produced at the jump moment. Additionally, after the density jump, the
predicted flux density decreases rapidly to a level that is significantly below
observations. A simple density-jump model thus can be excluded. In the
two-component jet model, although the observed late afterglow (after 1.6 days)
can potentially be explained as emission from the wide-component, the emergence
of this emission actually is too slow and it does not manifest as a
rebrightening as previously expected. The energy-injection model seems to be
the most preferred choice. By engaging a sequence of energy-injection events,
it provides an acceptable fit to the rebrightening at d, as well as
the whole observed light curve that extends to d. Further studies on
these multiple energy-injection processes may provide a valuable insight into
the nature of the central engines of gamma-ray bursts.Comment: 18 pages, 3 figures; a few references added and minor word changes;
now accepted for publication in Ap
Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas
The Luther-Emery liquid is a state of matter that is predicted to occur in
one-dimensional systems of interacting fermions and is characterized by a
gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a
realization of the Luther-Emery phase in a trapped cold-atom gas. We study by
means of the density-matrix renormalization-group technique a two-component
atomic Fermi gas with attractive interactions subject to parabolic trapping
inside an optical lattice. We demonstrate how this system exhibits compound
phases characterized by the coexistence of spin pairing and atomic-density
waves. A smooth crossover occurs with increasing magnitude of the atom-atom
attraction to a state in which tightly bound spin-singlet dimers occupy the
center of the trap. The existence of atomic-density waves could be detected in
the elastic contribution to the light-scattering diffraction pattern.Comment: 10 pages, 3 figures, 1 Table, submitted to Phys. Rev. on July 25th
200
Observation of an unusual field dependent slow magnetic relaxation and two distinct transitions in a family of new complexes
An unusual field dependent slow magnetic relaxation and two distinct
transitions were observed in a family of new rare earth-transition metal
complexes, [Ln (bipy) (HO) M(CN)] 1.5 (bipy) 4HO (bipy = 2,2'-bipyridine; Ln = Gd,Y; M = Fe,
Co). The novel magnetic relaxation, which is quite different from those
in normal spin glasses and superparamagnets but very resembles qualitatively
those in single-molecule magnet Mn-Ac even if they possess different
structures, might be attributed to the presence of frustration that is
incrementally unveiled by the external magnetic field. The two distinct
transitions in [GdFe] were presumed from DC and AC susceptibility as well as
heat capacity measurements.Comment: Revtex, 6 figure
- …