2,458 research outputs found

    Reduced Phase Space Quantization and Dirac Observables

    Full text link
    In her recent work, Dittrich generalized Rovelli's idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here we use this framework and propose a new way for how to implement explicitly a reduced phase space quantization of a given system, at least in principle, without the need to compute the gauge equivalence classes. The degree of practicality of this programme depends on the choice of the partial observables involved. The (multi-fingered) time evolution was shown to correspond to an automorphism on the set of Dirac observables so generated and interesting representations of the latter will be those for which a suitable preferred subgroup is realized unitarily. We sketch how such a programme might look like for General Relativity. We also observe that the ideas by Dittrich can be used in order to generate constraints equivalent to those of the Hamiltonian constraints for General Relativity such that they are spatially diffeomorphism invariant. This has the important consequence that one can now quantize the new Hamiltonian constraints on the partially reduced Hilbert space of spatially diffeomorphism invariant states, just as for the recently proposed Master constraint programme.Comment: 18 pages, no figure

    Spectral correlations in systems undergoing a transition from periodicity to disorder

    Get PDF
    We study the spectral statistics for extended yet finite quasi 1-d systems which undergo a transition from periodicity to disorder. In particular we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme limits -- the approach to Poissonian statistics in the (weakly) disordered case, and the universal expressions derived for the periodic case. The theoretical results agree very well with the spectral statistics obtained numerically for chains of chaotic billiards and graphs.Comment: 16 pages, Late

    Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology

    Get PDF
    We develop a gauge invariant canonical perturbation scheme for perturbations around symmetry reduced sectors in generally covariant theories, such as general relativity. The central objects of investigation are gauge invariant observables which encode the dynamics of the system. We apply this scheme to perturbations around a homogeneous and isotropic sector (cosmology) of general relativity. The background variables of this homogeneous and isotropic sector are treated fully dynamically which allows us to approximate the observables to arbitrary high order in a self--consistent and fully gauge invariant manner. Methods to compute these observables are given. The question of backreaction effects of inhomogeneities onto a homogeneous and isotropic background can be addressed in this framework. We illustrate the latter by considering homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a homogeneous and isotropic sector.Comment: 39 pages, 1 figur

    Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order

    Full text link
    In our companion paper we identified a complete set of manifestly gauge-invariant observables for general relativity. This was possible by coupling the system of gravity and matter to pressureless dust which plays the role of a dynamically coupled observer. The evolution of those observables is governed by a physical Hamiltonian and we derived the corresponding equations of motion. Linear perturbation theory of those equations of motion around a general exact solution in terms of manifestly gauge invariant perturbations was then developed. In this paper we specialise our previous results to an FRW background which is also a solution of our modified equations of motion. We then compare the resulting equations with those derived in standard cosmological perturbation theory (SCPT). We exhibit the precise relation between our manifestly gauge-invariant perturbations and the linearly gauge-invariant variables in SCPT. We find that our equations of motion can be cast into SCPT form plus corrections. These corrections are the trace that the dust leaves on the system in terms of a conserved energy momentum current density. It turns out that these corrections decay, in fact, in the late universe they are negligible whatever the value of the conserved current. We conclude that the addition of dust which serves as a test observer medium, while implying modifications of Einstein's equations without dust, leads to acceptable agreement with known results, while having the advantage that one now talks about manifestly gauge-invariant, that is measurable, quantities, which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure

    A perturbative approach to Dirac observables and their space-time algebra

    Full text link
    We introduce a general approximation scheme in order to calculate gauge invariant observables in the canonical formulation of general relativity. Using this scheme we will show how the observables and the dynamics of field theories on a fixed background or equivalently the observables of the linearized theory can be understood as an approximation to the observables in full general relativity. Gauge invariant corrections can be calculated up to an arbitrary high order and we will explicitly calculate the first non--trivial correction. Furthermore we will make a first investigation into the Poisson algebra between observables corresponding to fields at different space--time points and consider the locality properties of the observables.Comment: 23 page

    Uni-directional transport properties of a serpent billiard

    Full text link
    We present a dynamical analysis of a classical billiard chain -- a channel with parallel semi-circular walls, which can serve as a model for a bended optical fiber. An interesting feature of this model is the fact that the phase space separates into two disjoint invariant components corresponding to the left and right uni-directional motions. Dynamics is decomposed into the jump map -- a Poincare map between the two ends of a basic cell, and the time function -- traveling time across a basic cell of a point on a surface of section. The jump map has a mixed phase space where the relative sizes of the regular and chaotic components depend on the width of the channel. For a suitable value of this parameter we can have almost fully chaotic phase space. We have studied numerically the Lyapunov exponents, time auto-correlation functions and diffusion of particles along the chain. As a result of a singularity of the time function we obtain marginally-normal diffusion after we subtract the average drift. The last result is also supported by some analytical arguments.Comment: 15 pages, 9 figure (19 .(e)ps files

    Testing the Master Constraint Programme for Loop Quantum Gravity II. Finite Dimensional Systems

    Full text link
    This is the second paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we begin with the simplest examples: Finite dimensional models with a finite number of first or second class constraints, Abelean or non -- Abelean, with or without structure functions.Comment: 23 pages, no figure

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Spectral Statistics in Chaotic Systems with Two Identical Connected Cells

    Full text link
    Chaotic systems that decompose into two cells connected only by a narrow channel exhibit characteristic deviations of their quantum spectral statistics from the canonical random-matrix ensembles. The equilibration between the cells introduces an additional classical time scale that is manifest also in the spectral form factor. If the two cells are related by a spatial symmetry, the spectrum shows doublets, reflected in the form factor as a positive peak around the Heisenberg time. We combine a semiclassical analysis with an independent random-matrix approach to the doublet splittings to obtain the form factor on all time (energy) scales. Its only free parameter is the characteristic time of exchange between the cells in units of the Heisenberg time.Comment: 37 pages, 15 figures, changed content, additional autho

    Quantum Spin Dynamics VIII. The Master Constraint

    Get PDF
    Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single Master constraint. The MCP is designed to overcome the complications associated with the non -- Lie -- algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the Master Constraint Operator was derived. In this paper we close this gap and prove that the quadratic form is closable and thus stems from a unique self -- adjoint Master Constraint Operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.Comment: 19p, no figure
    • …
    corecore