research

Uni-directional transport properties of a serpent billiard

Abstract

We present a dynamical analysis of a classical billiard chain -- a channel with parallel semi-circular walls, which can serve as a model for a bended optical fiber. An interesting feature of this model is the fact that the phase space separates into two disjoint invariant components corresponding to the left and right uni-directional motions. Dynamics is decomposed into the jump map -- a Poincare map between the two ends of a basic cell, and the time function -- traveling time across a basic cell of a point on a surface of section. The jump map has a mixed phase space where the relative sizes of the regular and chaotic components depend on the width of the channel. For a suitable value of this parameter we can have almost fully chaotic phase space. We have studied numerically the Lyapunov exponents, time auto-correlation functions and diffusion of particles along the chain. As a result of a singularity of the time function we obtain marginally-normal diffusion after we subtract the average drift. The last result is also supported by some analytical arguments.Comment: 15 pages, 9 figure (19 .(e)ps files

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019