2,001 research outputs found
Carrier mediated interlayer exchange, ground state phase diagrams and transition temperatures of magnetic thin films
We investigate the influence of the carrier density and other parameters on
the interlayer exchange in magnetic thin film systems. The system consists of
ferromagnetic and non-magnetic layers where the carriers are allowed to move
from layer to layer. For the ferromagnetic layers we use the Kondo-lattice
model to describe interactions between itinerant electrons and local moments.
The electrons' properties are calculated by a Green's function's equation of
motion approach while the magnetization of the local moments is determined by a
minimization of the free energy. As results we present magnetic phase diagrams
and the interlayer exchange over a broad parameter range. Additionally we can
calculate the transition temperatures for different alignments of the
ferromagnetic layers' magnetizations.Comment: accepted for publication in Phys. Rev.
The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100
The evolution of the global aerosol system from 1860 to 2100 is investigated through a transient atmosphere-ocean General Circulation Model climate simulation with interactively coupled atmospheric aerosol and oceanic biogeochemistry modules. The microphysical aerosol module HAM incorporates the major global aerosol cycles with prognostic treatment of their composition, size distribution, and mixing state. Based on an SRES A1B emission scenario, the global mean sulfate burden is projected to peak in 2020 while black carbon and particulate organic matter show a lagged peak around 2070. From present day to future conditions the anthropogenic aerosol burden shifts generally from the northern high-latitudes to the developing low-latitude source regions with impacts on regional climate. Atmospheric residence- and aging-times show significant alterations under varying climatic and pollution conditions. Concurrently, the aerosol mixing state changes with an increasing aerosol mass fraction residing in the internally mixed accumulation mode. The associated increase in black carbon causes a more than threefold increase of its co-single scattering albedo from 1860 to 2100. Mid-visible aerosol optical depth increases from pre-industrial times, predominantly from the aerosol fine fraction, peaks at 0.26 around the sulfate peak in 2020 and maintains a high level thereafter, due to the continuing increase in carbonaceous aerosols. The global mean anthropogenic top of the atmosphere clear-sky short-wave direct aerosol radiative perturbation intensifies to −1.1 W m^−2 around 2020 and weakens after 2050 to −0.6 W m^−2, owing to an increase in atmospheric absorption. The demonstrated modifications in the aerosol residence- and aging-times, the microphysical state, and radiative properties challenge simplistic approaches to estimate the aerosol radiative effects from emission projections
Magnetic Phase Diagrams of Manganites-like Local-Moment Systems with Jahn-Teller distortions
We use an extended two-band Kondo lattice model (KLM) to investigate the
occurrence of different (anti-)ferromagnetic phases or phase separation
depending on several model parameters. With regard to CMR-materials like the
manganites we have added a Jahn-Teller term, direct antiferromagnetic coupling
and Coulomb interaction to the KLM. The electronic properties are
self-consistently calculated in an interpolating self-energy approach with no
restriction to classical spins and going beyond mean-field treatments. Further
on we do not have to limit the Hund's coupling to low or infinite values.
Zero-temperature phase diagrams are presented for large parameter intervals.
There are strong influences of the type of Coulomb interaction (intraband,
interband) and of the important parameters (Hund's coupling, direct
antiferromagnetic exchange, Jahn-Teller distortion), especially at intermediate
couplings.Comment: 11 pages, 9 figures. Accepted for publication in Phys. Rev.
The ground state phase diagram of the diluted ferromagnetic Kondo-lattice model
We investigate the existence of several (anti-)ferromagnetic phases in the
diluted ferromagnetic Kondo-lattice model, i.e. ferromagnetic coupling of local
moment and electron spin. To do this we use a coherent potential approximation
(CPA) with a dynamical alloy analogy. For the CPA we need effective potentials,
which we get first from a mean-field approximation. To improve this treatment
we use in the next step a more appropriate moment conserving decoupling
approach and compare both methods. The different magnetic phases are modelled
by defining two magnetic sublattices. As a result we present zero-temperature
phase diagrams according to the important model parameters and different
dilutions.Comment: accepted for publication in Journal of Physics: Condensed Matte
Sources of uncertainties in modelling black carbon at the global scale
Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation. The schemes for the atmospheric processing of black carbon that have been tested with the model are (i) a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii) a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude. The sensitivity to wet scavenging has been tested by varying in-cloud and below-cloud removal. BC lifetime increases by 10% when large scale and convective scale precipitation removal efficiency are reduced by 30%, while the variation is very small when below-cloud scavenging is zero. Since the emission inventories are representative of elemental carbon-like substance, the model output should be compared to elemental carbon measurements and if known, the ratio of black carbon to elemental carbon mass should be taken into account when the model is compared with black carbon observation
Exciton Diamagnetic Shifts and Valley Zeeman Effects in Monolayer WS and MoS to 65 Tesla
We report circularly-polarized optical reflection spectroscopy of monolayer
WS and MoS at low temperatures (4~K) and in high magnetic fields to
65~T. Both the A and the B exciton transitions exhibit a clear and very similar
Zeeman splitting of approximately 230~eV/T (), providing
the first measurements of the valley Zeeman effect and associated -factors
in monolayer transition-metal disulphides. These results complement and are
compared with recent low-field photoluminescence measurements of valley
degeneracy breaking in the monolayer diselenides MoSe and WSe. Further,
the very large magnetic fields used in our studies allows us to observe the
small quadratic diamagnetic shifts of the A and B excitons in monolayer WS
(0.32 and 0.11~eV/T, respectively), from which we calculate exciton
radii of 1.53~nm and 1.16~nm. When analyzed within a model of non-local
dielectric screening in monolayer semiconductors, these diamagnetic shifts also
constrain and provide estimates of the exciton binding energies (410~meV and
470~meV for the A and B excitons, respectively), further highlighting the
utility of high magnetic fields for understanding new 2D materials.Comment: 9 pages, 5 figure
Magneto-reflection spectroscopy of monolayer transition-metal dichalcogenide semiconductors in pulsed magnetic fields
We describe recent experimental efforts to perform polarization-resolved
optical spectroscopy of monolayer transition-metal dichalcogenide
semiconductors in very large pulsed magnetic fields to 65 tesla. The
experimental setup and technical challenges are discussed in detail, and
temperature-dependent magneto-reflection spectra from atomically thin tungsten
disulphide (WS) are presented. The data clearly reveal not only the valley
Zeeman effect in these 2D semiconductors, but also the small quadratic exciton
diamagnetic shift from which the very small exciton size can be directly
inferred. Finally, we present model calculations that demonstrate how the
measured diamagnetic shifts can be used to constrain estimates of the exciton
binding energy in this new family of monolayer semiconductors.Comment: PCSI-43 conference (Jan. 2016; Palm Springs, CA
- …