424 research outputs found

    Long-term variations in abundance and distribution of sulfuric acid vapor in the Venus atmosphere inferred from Pioneer Venus and Magellan radio occultation studies

    Get PDF
    Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued monitoring of the abundance of distribution of H2SO4(g) in the Venus atmosphere, as well as other interesting atmospheric properties. Without such measurements it will be difficult to address other issues such as the short-term spatial variability of the abundance of H2SO4(g) at similar latitudes in Venus atmosphere, and the identities of particles responsible for large-scale variations observed in NIR images

    \u3cem\u3eArabidopsis\u3c/em\u3e AZI1 Family Proteins Mediate Signal Mobilization for Systemic Defence Priming

    Get PDF
    Priming is a major mechanism behind the immunological \u27memory\u27 observed during two key plant systemic defences: systemic acquired resistance (SAR) and induced systemic resistance (ISR). Lipid-derived azelaic acid (AZA) is a mobile priming signal. Here, we show that the lipid transfer protein (LTP)-like AZI1 and its closest paralog EARLI1 are necessary for SAR, ISR and the systemic movement and uptake of AZA in Arabidopsis. Imaging and fractionation studies indicate that AZI1 and EARLI1 localize to expected places for lipid exchange/movement to occur. These are the ER/plasmodesmata, chloroplast outer envelopes and membrane contact sites between them. Furthermore, these LTP-like proteins form complexes and act at the site of SAR establishment. The plastid targeting of AZI1 and AZI1 paralogs occurs through a mechanism that may enable/facilitate their roles in signal mobilization

    Evaluation of glomerular lesions in diabetes mellitus

    Get PDF

    Glomerular cell number in normal subjects and in type 1 diabetic patients

    Get PDF
    Glomerular cell number in normal subjects and in type 1 diabetic patients.BackgroundThe number of cells in glomeruli has been a challenging measure, especially in human kidneys, with only a small amount of tissue obtained by biopsy. However, the number of cells and their function are important determinants of renal function in health and disease.MethodsModern morphometric techniques have now provided the means to determine the numerical density (Nv) and number (with a measure of glomerular volume) of endothelial cells, mesangial cells, and podocytes in plastic-embedded renal tissue biopsied from nondiabetic subjects (N = 36) and type 1 diabetic patients (N = 46) over an extended age range from childhood through late adult.ResultsNv values for all glomerular cells varied only slightly with age and did not change within the range of glomerular lesions of diabetes studied. Thus, the increase in glomerular volume during childhood to a steady level thereafter was the primary determinant of total glomerular cell number. The number of mesangial cells and endothelial cells increased with age, reflecting the increase in all cells, while the podocytes remained unchanged in number over all ages studied (10 to 69 years). Numbers of total glomerular cells, mesangial cells, and endothelial cells were not changed with diabetes, while podocytes were fewer in number in diabetic patients of all ages, with reduced podocyte numbers even in diabetes of short duration.ConclusionsThe essentially constant glomerular cell density in nondiabetic and diabetic subjects under different circumstances possibly indicates an underlying propensity for the glomerulus to regulate its architecture to maintain a constant number of cells per volume, no matter the size of the glomerulus or the severity of diabetic nephropathy studied in this set of patients. The reductions in podocyte numbers in both younger and older diabetic patients indicate a significant risk for functional abnormalities as diabetic nephropathy progresses. Moreover, these observations do not support the suggestion of marked increases in glomerular cell number (and especially mesangial cells) with the development and progression of diabetic nephropathy

    Studies of renal autoregulation in pancreatectomized and streptozotocin diabetic rats

    Get PDF
    Studies of renal autoregulation in pancreatectomized and streptozotocin diabetic rats. We studied renal autoregulation in pancreatectomized Munich-Wistar diabetic rats and in their sham-operated controls. In a second experiment we studied renal autoregulation in untreated and insulin treated streptozotocin diabetic Munich-Wistar rats and their nondiabetic controls. In the first experiment the diabetic rats had higher baseline renal blood flows (RBF). There was a fall in renal vascular resistance (RVR) and sustained RBF in both diabetic and control rats as renal perfusion pressures (RPP) was reduced from 130 and 110mm Hg. As RPP was reduced from 110 and 80mm Hg, there was no significant change in RVR in control rats and RBF began to fall. Below RPP of 80mm Hg RVR rose and RBF fell sharply in these rats. In contrast, there was a progressive fall in RVR as RPP was lowered to 60mm Hg in the diabetic rats and, thus, RBF was much better sustained in these animals. In the second experiment the plasma glucose level was 502 ± 52 mg/dl (X ± SD) in the untreated diabetic rats and only modestly reduced to 411 ± 49 mg/dl in the insulin treated animals. Untreated streptozotocin diabetic rats had moderately reduced and insulin-treated diabetic rats had mildly reduced baseline RVR and RBF. However, in these animals as in the pancreatectomized rats the increases in RVR noted in control rats at subautoregulatory RPPs were not seen. Thus, regardless of whether baseline RBFs were increased or decreased, diabetic rats sustained RBF at markedly reduced RPPs far more efficiently than did nondiabetic rats. The pathogenesis of these abnormalities in diabetic rats was not learned in these studies. However, it is likely that further study of autoregulation in diabetic rats could uncover factors influencing renal vascular tone which would be helpful in understanding the renal hemodynamic perturbations which may attend this experimental model

    Radio Occultation Measurements of Europa's Ionosphere From Juno's Close Flyby

    Get PDF
    On 29 September 2022 the Juno spacecraft flew within 354 km of Europa's surface while several instruments probed the moon's surroundings. During the close flyby, radio occultations were performed by collecting single-frequency Doppler measurements. These investigations are essential to the study of Europa's ionosphere and represent the first repeat sampling of any set of conditions since the Galileo era. Ingress measurements resulted in a marginal detection with a peak ionospheric density of 4,000 Â± 3,700 cm−3 (3σ) at 22 km altitude. A more significant detection emerged on egress, with a peak density of 6,000 Â± 3,000 cm−3 (3σ) at 320 km altitude. Comparison with Galileo measurements reveals a consistent picture of Europa's ionosphere, and confirms its dependence on illumination conditions and position within Jupiter's magnetosphere. However, the overall lower densities measured by Juno suggest a dependence on time of observation, with implications for the structure of the neutral atmosphere

    Performance of A1C for the Classification and Prediction of Diabetes

    Get PDF
    OBJECTIVE Although A1C is now recommended to diagnose diabetes, its test performance for diagnosis and prognosis is uncertain. Our objective was to assess the test performance of A1C against single and repeat glucose measurements for diagnosis of prevalent diabetes and for prediction of incident diabetes. RESEARCH DESIGN AND METHODS We conducted population-based analyses of 12,485 participants in the Atherosclerosis Risk in Communities (ARIC) study and a subpopulation of 691 participants in the Third National Health and Nutrition Examination Survey (NHANES III) with repeat test results. RESULTS Against a single fasting glucose ≄126 mg/dl, the sensitivity and specificity of A1C ≄6.5% for detection of prevalent diabetes were 47 and 98%, respectively (area under the curve 0.892). Against repeated fasting glucose (3 years apart) ≄126 mg/dl, sensitivity improved to 67% and specificity remained high (97%) (AUC 0.936). Similar results were obtained in NHANES III against repeated fasting glucose 2 weeks apart. The accuracy of A1C was consistent across age, BMI, and race groups. For individuals with fasting glucose ≄126 mg/dl and A1C ≄6.5% at baseline, the 10-year risk of diagnosed diabetes was 88% compared with 55% among those individuals with fasting glucose ≄126 mg/dl and A1C 5.7–<6.5%. CONCLUSIONS A1C performs well as a diagnostic tool when diabetes definitions that most closely resemble those used in clinical practice are used as the “gold standard.” The high risk of diabetes among individuals with both elevated fasting glucose and A1C suggests a dual role for fasting glucose and A1C for prediction of diabetes. Although A1C is now recommended for the diagnosis of diabetes (1,2), its precise test performance is uncertain. The lack of a single, clear “gold standard” poses a challenge for determining the performance of A1C. Previous diagnostic studies of A1C have relied exclusively on a single elevated fasting or 2-h glucose values as gold standards (3–5). However, because glucose determinations are inherently more variable than A1C (6), these convenient gold standards are likely to reduce the apparent accuracy of A1C as a diagnostic test. A stronger gold standard would rely on repeated glucose determinations on different days (2), i.e., the recommended approach to diagnosis of diabetes in clinical practice. Alternatively, A1C and fasting glucose can be compared head-to-head against the subsequent development of clinically diagnosed diabetes as the gold standard. We hypothesized that 1) A1C would perform well as a diagnostic and prognostic test for diabetes across its full range and at the American Diabetes Association–recommended threshold of 6.5% and 2) that its performance would be best when judged against stronger, most clinically relevant gold standards
    • 

    corecore