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Arabidopsis AZI1 family proteins mediate signal
mobilization for systemic defence priming
Nicolás M. Cecchini1, Kevin Steffes1, Michael R. Schläppi2, Andrew N. Gifford3,w & Jean T. Greenberg1

Priming is a major mechanism behind the immunological ‘memory’ observed during two

key plant systemic defences: systemic acquired resistance (SAR) and induced systemic

resistance (ISR). Lipid-derived azelaic acid (AZA) is a mobile priming signal. Here, we show

that the lipid transfer protein (LTP)-like AZI1 and its closest paralog EARLI1 are necessary for

SAR, ISR and the systemic movement and uptake of AZA in Arabidopsis. Imaging and

fractionation studies indicate that AZI1 and EARLI1 localize to expected places for lipid

exchange/movement to occur. These are the ER/plasmodesmata, chloroplast outer envel-

opes and membrane contact sites between them. Furthermore, these LTP-like proteins form

complexes and act at the site of SAR establishment. The plastid targeting of AZI1 and AZI1

paralogs occurs through a mechanism that may enable/facilitate their roles in signal

mobilization.
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P
lants recognize pathogens via perception of conserved
molecular patterns from microbes (MAMPs; microbe-
associated molecular patterns), such as flg22 peptides from

bacteria flagellum, or effectors that microbes use to suppress plant
defences1. After recognition, local and systemic immunity are
established2. Plants induced for systemic immunity show broad
spectrum and long-lasting resistance to new infections3. Systemic
resistance involves an energy-saving ‘primed state’, such that
secondary infections of distal leaves induces a faster and/or
stronger defence than occurs in naive plants4.

Different types of systemic defence programs are established
depending on the inducing microbe, as well as the plant tissue
where local immunity is triggered5. When a pathogen or MAMP
is recognized in leaves, plants induce systemic acquired resistance
(SAR) or MAMP-triggered SAR (mSAR)6,7. However, if a first
exposure occurs in the roots, usually with a beneficial microbe,
plants trigger induced systemic resistance (ISR). Although SAR
and ISR result in a similar level of pathogen resistance, few
common components are known to be shared5,8.

Only a handful of factors specifically affect SAR without
affecting local disease resistance9–13. These SAR-specific
components are candidates for generating/mobilizing and/or
being receptors for mobile signals. On the other hand, many
natural priming signals have been proposed, including azelaic
acid (AZA) and its precursor/derivatives, methyl salicylate,
jasmonic acid, dehydroabietinal, pipecolic acid and a glycerol-3-
phosphate-dependent metabolite10,12,14–19. The existence of more
than one signal capable of establishing a primed state suggests
that plants may use a consortium of molecules to reach a certain
‘priming threshold’. Responses to specific signals can depend on
plant growth/infection conditions, which highlights the plasticity
of plant responses10,14,16,20–22.

A key unexplored aspect of systemic resistance/priming
establishment is the process by which the signal(s) are mobilized
from the site of cellular synthesis to the vascular stream, where
they are moved and finally taken up by the distal cells. Plants can
move small proteins and metabolites to systemic tissues mainly
using the phloem23. Because uploading to the phloem can be
apoplastic and/or symplastic, signals must reach the endoplasmic
reticulum (ER)–plasmodesmata and/or the apoplast. Soluble
signals can move freely once they reach the cytoplasm, but
hydrophobic signals require a specific transport mechanism. In
the case of SAR-inducing petiole exudates, the main biologically
active fraction is apolar19. Thus, movement of SAR signals must
involve deployment of transport machineries. Intracellular
transport of lipidic molecules could use vesicular or non-
vesicular transport through transporter/chaperone proteins as
well as by direct membrane–membrane contact (membrane
contact sites; MCSs)24,25. In plants, MCSs occur between the
chloroplast, ER and plasma membrane (PM)26,27. Lipid transfer
proteins (LTPs) are key components in MCS formation, where
lipid exchange occurs27–29.

Two of the few known SAR-specific components are azelaic acid
induced 1 (AZI1) and defective in induced resistance 1 (DIR1)10,11.
Both proteins have eight cysteine motifs (8CM) commonly
associated with LTPs and have one or more paralogs. AZI1 and
DIR1 belong to different families: the hybrid proline-rich proteins
(HyPRPs) and the non-specific LTPs30, respectively. Mutants of
AZI1 and DIR1 not only lack SAR, but are also either locally (dir1)
or systemically (azi1) non-responsive to the AZA mobile priming
signal, a lipidic 9 carbon dicarboxylic acid10 generated from plastid
galactolipid oxidation during infection22,31. Full dehydroabietinal
responsiveness also requires DIR1 and AZI1 and is enhanced in the
presence of AZA17. DIR1 and AZI1 were proposed to form part of
a functional unit12,32 and can form complexes that localize to the
ER and plasmodesmata32.

This work reveals novel localization to plastids, strong
membrane association properties and previously undescribed
signalling functions for AZI1 and its close paralog early
Arabidopsis aluminium induced 1 (EARLI1), which are needed
for moving AZA/AZA derivative(s) and establishing SAR, mSAR
and ISR. In addition, we give the first evidence for a specific
function of the proline-rich region (PRR) of AZI1 and related
proteins as a component of a plastid-targeting signal that is likely
a general property of many HyPRPs in the plant kingdom.

Results
A pool of AZI1 localizes to chloroplast outer envelopes. To gain
insight into how AZI1 and DIR1 might differ in their contribu-
tion to SAR and AZA-induced priming, we studied the locations
in Nicotiana benthamiana of dexamethasone (Dex)-inducible
green fluorescent protein (GFP) fusion proteins within cells. The
control, soluble GFP, was distributed uniformly in the cytosol and
nucleus (Supplementary Fig. 1a). GFP patterns of AZI1:GFP and
DIR1:GFP were consistent with plasmodesmata (punctate struc-
tures at cell peripheries maintained after plasmolysis), PM and ER
network (Fig. 1a, Supplementary Fig. 1b), in agreement with
Yu et al.32. AZI1:GFP was also visible in ER transcytoplasmic
strands and ring patterns similar to outer envelope membrane
(OEM) proteins that tightly surrounded chloroplasts33 and in
stromule-like projections (Fig. 1a,b). This chloroplastic pattern
was also observed when AZI1:GFP levels were lower (driven by
constitutive 35S promoter; Supplementary Fig. 1c). AZI1:GFP co-
localized with the OEM marker OEP7:RFP (red fluorescent
protein) around chloroplasts and partially with BiP:RFP, an ER
marker, in contact sites between ER and chloroplast/stromules
(Fig. 1c). In contrast, DIR1:GFP co-localized only with BiP:RFP
and was not found around chloroplasts (Fig. 1d).

Fractionation showed that DIR1:GFP was present in soluble,
microsomal and apoplastic fractions (Fig. 1e), as previously
reported12,34,35. AZI1:GFP was present in the microsomal and
chloroplast fractions, but was not detected in soluble and
apoplastic fractions (Fig. 1e). The controls, soluble GFP (GFP)
and chloroplast-targeted GFP (chl:GFP), were found in soluble
and chloroplastic fractions, respectively.

The presence of AZI1:GFP in microsomal, but not soluble
fractions prompted us to test the strength of association of
AZI1:GFP with membranes. We treated the microsomal fraction
with different salt concentrations, urea or detergents. Only
treatments with NP40þ deoxycolate or SDS completely solubilized
the control integral membrane marker HþATPase (Fig. 1f). These
treatments also partially solubilized AZI1:GFP. Thus, AZI1:GFP
has a strong association with membranes.

After chloroplast purification, OEM proteins are susceptible to
protease digestion36. In thermolysin-treated chloroplasts,
AZI1:GFP was largely degraded indicating that at least the GFP
portion was accessible to the cytosol, similar to OEP7 (Fig. 1g). In
contrast, ATPaseb, a protein that resides inside chloroplasts, was
unaffected by thermolysin indicating that the isolated chloroplasts
retained their integrity. Samples were not contaminated with ER,
since BiP:RFP:HA was not present in the chloroplast fraction.
Thus, DIR1 and AZI1 have overlapping, but also distinct cellular
locations and biochemical properties, consistent with the proteins
having different roles during SAR and AZA priming10.

Chloroplast-localized AZI1 requires its PRR. All AZI1 paralog
members share hydrophobic N-termini annotated as signal
peptides (SPs). However, AZI1 and some AZI1 paralogs also
possess a PRR with distinctive lengths (AZI1, EARLI1, AZI3
to AZI6) or no PRR (AZI7) (Fig. 2). In agrotransformed
N. benthamiana, GFP fusions of AZI1 paralogs with long PRRs
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(EARLI1:GFP and AZI3:GFP) shared a similar localization
pattern with AZI1:GFP, including prominent ring patterns
surrounding chloroplasts and ER, whereas AZI5:GFP (short PRR)
and AZI7:GFP lacked the chloroplast ring pattern (Fig. 3a). For
EARLI1, fractionation confirmed that a pool of the protein
localized to chloroplasts (Supplementary Fig. 2). This shows a

correlation between PRR length and chloroplast localization. GFP
fusions to the N-termini of AZI1 and EARLI1, AZI3, AZI5 and
AZI7 (lacking their C-terminal 8CM/LTP-like domains) recapi-
tulated most of the patterns seen with full-length GFP fusion
proteins (Fig. 3b). However, the perinuclear ER punctate/dense
signals observed with full-length fusions (Fig. 3a) was missing
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Figure 1 | Subcellular localization and membrane association properties of AZI1 and DIR1 in agrotransformed N. benthamiana. (a) Laser scanning

confocal microscopy (confocal) micrographs showing localization of AZI1:GFP and DIR1:GFP controlled by Dex-inducible promoter in epidermal cells. White

arrows: plasmodesmata-like structures/plasma membrane, yellow arrowheads: ER network/ER transcytoplasmic strands and red arrowheads: ring pattern

surrounding chloroplasts. Scale bars, 30 mm. (b) Confocal Z-series maximum intensity projection showing a close up view of AZI1:GFP surrounding

chloroplasts and in stromule-like structures (white arrowheads). Scale bar, 5 mm. GFP, green; chloroplast autofluorescence, blue (Chl). (c,d) Confocal

micrographs of AZI1:GFP (c) or DIR1:GFP (d) controlled by Dex-inducible promoter co-expressed with a chloroplast outer envelope protein marker

(OEP7:RFP) or a ER marker (BiP:RFP) in epidermal cells. Bottom panels in c are the close up of AZI1:GFP (from middle panels inset) in a stromule and

surrounding a chloroplast showing contact sites with the ER marker (co-localization points are shown using a white mask on the merged image). Scale bars,

3mm (upper panels) and 5 mm (middle panels). Arrowheads: co-localization. Arrows: contact sites between chloroplastic AZI1:GFP and BiP:RFP. Scale bar,

10mm. GFP, green; RFP, red; chloroplast autofluorescence, blue (Chl). (e) Western blots of subcellular fractions: apoplast (A), microsomal (M), chloroplast

(Ch), soluble (S) and total (T) from N. benthamiana expressing AZI1:GFP, DIR1:GFP, cytosolic GFP (GFP) or a GFP targeted to chloroplasts (chl:GFP). Bands

were revealed using anti-GFP antibody. Similar results were observed in at least three independent experiments. (f) Membrane association strength of

AZI1:GFP. Western blots, using the indicated antibodies, of pelleted and soluble proteins after total microsomal fraction treatments with: 1: control (150 mM

NaCl); 2: 1.5 M NaCl; 3: 2 M urea; 4: 1% Triton; 5: 1% NP-40þ0.5% deoxycolate; and 6: 1% SDS. HþATPase is an integral membrane protein marker.

(g) Thermolysin assay showing outer envelope membrane localization of AZI1:GFP. Intact chloroplasts were treated with control buffer (� ) or thermolysin

(þ ). Proteins from total homogenates (T) and chloroplast fractions (Ch) were revealed by western blots using the indicated antibodies. ATPaseb is an

internal chloroplast marker. Similar results were observed in two independent experiments.
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with the N-terminal GFP fusion proteins (Fig. 3b). Thus, dense
perinuclear localization was due to the 8CM domains of these
proteins. To test whether a PRR is needed for the chloroplast
OEM targeting, we localized a deletion version of AZI1:GFP

lacking the PRR. AZI1DPRR:GFP showed no OEM chloroplast
ring pattern signals, but did exhibit prominent ER and perinuclear
ER signals (Fig. 3c). Thus, the PRR is needed for the chloroplast
OEM targeting of AZI1 and probably also of its paralogs.

8CM LTP

Putative SP PRR

Figure 2 | ClustalW alignment of Arabidopsis AZI1 and DIR1 paralog proteins. The bars above the alignment indicates the putative signal sequence (SP),

the N-terminal proline-rich region (PRR) and the lipid transfer protein eight cysteine motif (8CM–LTP). Black and grey boxes indicate identical or

homologue sequences, respectively. Blue boxes indicate identical sequences along PRR.

N-AZI1:GFP N-EARLI1:GFP N-AZI3:GFP N-AZI5:GFP N-AZI7:GFPb

a
EARLI1:GFP AZI3:GFP AZI5:GFP AZI7:GFP

c
AZI1ΔPRR:GFP Bright field/mergeAZI1ΔPRR:GFP AZI1ΔPRR:GFP

Figure 3 | AZI1’s paralog proteins subcellular localization in agrotransformed N. benthamiana. (a) Confocal micrographs showing localization of

Dex-inducible EARLI1:GFP, AZI3:GFP, AZI5:GFP and AZI7:GFP. Yellow arrowheads: perinuclear ER punctate/dense signals and red arrowheads: ring pattern

surrounding chloroplasts. Bottom panels: close up views of chloroplasts. (b) Confocal micrographs showing localization of Dex-inducible fusions to GFP

with N-terminal regions of AZI1, EARLI1, AZI3, AZI5 and AZI7. Bottom panels: close up views of chloroplasts. (c) Confocal micrographs of AZI1 without its

proline-rich region (AZI1DPRR:GFP). Right panel: close up views of chloroplasts. (a–c) Chloroplasts autofluorescence, blue; GFP, green. Scale bars, 15mm.
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AZI1 targeted to plastids increases during SAR induction. In
Arabidopsis, Dex-inducible AZI1:GFP complemented the SAR
defect of azi1-1 Arabidopsis (Supplementary Fig. 3a), similar to
constitutively expressed AZI1:GFP32. Upon Dex spray-treatment
of two independent lines, AZI1:GFP showed similar localization
as that seen in N. benthamiana. GFP signals, detected mainly in
epidermal cells, co-localized with the autofluorescence of plastids
(Fig. 4a, Supplementary Fig. 3b) and was observed in highly
dynamic stromules (Supplementary Movie 1). Z-series maximum
intensity projections and three-dimensional reconstruction from
optical sectioning showed AZI1:GFP in punctate/vesicle-like
structures along ER transcytoplasmic strands and on
chloroplast envelopes (Fig. 4b, Supplementary Movie 2).
AZI1:GFP was also observed in the PM (Fig. 4b). In addition,
diffuse green fluorescence was also found within some nuclei
(Fig. 4b; Supplementary Fig. 3b, Supplementary Movie 2).
Because the signal was throughout the nucleus, the GFP signal
was probably due to cleavage from the fusion protein. By using
antibodies that specifically recognize AZI1 and EARLI1 (the most
similar paralog of AZI1) monomers and SDS-resistant dimers in

Arabidopsis37, we found that in wild-type (WT) Arabidopsis
plants native AZI1/EARLI1 proteins are enriched similarly to
ATPaseb (chloroplastic marker) in the chloroplast fraction
(Fig. 4c). As expected, BiP and FBP (ER and cytoplasm
markers, respectively) are decreased in chloroplast fraction
indicative of a low contamination in the fractionation (Fig. 4c).
Interestingly, relative to a mock treatment, a SAR-inducing
infection of Arabidopsis caused increased EARLI1/AZI1 in the
chloroplast fraction, but did not affect total protein levels (Fig. 4c,
right graph). Together with localization data, this suggest that the
plastid pool contributes to the systemic defence induction.

Arabidopsis EARLI1 is required for SAR and AZA priming.
Since AZI1 and EARLI1 both have roles in stress tolerance37,38,
we tested if they function similarly in pathogen defence. A SAR-
inducing strain (PmaDG6) grew to the same extent in earli1-1
and WT (Supplementary Fig. 4a). Moreover, similar to azi1-1,
earli1-1 loss of function plants did not show SAR or AZA-
conferred systemic resistance to virulent Pseudomonas syringae
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AZI1–EARLI1 native proteins in chloroplast fraction after infection. Arabidopsis WT Col-0 leaves were mock-treated (� ; 10 mM MgSO4) or infected with

SAR-inducing strain PmaDG6 (þ ; OD600¼0.0025). Extracts were prepared 21 h after inoculations. Proteins from total homogenates (T) and chloroplast

fractions (Ch) were revealed by western blots using an anti-AZI1/EARLI1 polyclonal serum. Two bands are visualized corresponding to the native AZI1 and

EARLI1 monomer and dimer sizes (B17 and B37 kD). BiP, ATPaseb and FBP antibodies were used as ER, chloroplast and cytosolic markers, respectively.

The same percentage of tissue mass (10% of input) was loaded for each fraction. Similar results were observed in three independent experiments. Right

graph: AZI1–EARLI1 amount ratio between (� ) and (þ ) PmaDG6. Levels are relative to the total protein content in each Coomassie blue-stained

membrane lane as quantified by densitometry. The average with standard error from three biological replicates are shown. Asterisk indicate statistically

significant differences as determined using t-test (*Po0.05, n¼ 3).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8658 ARTICLE

NATURE COMMUNICATIONS | 6:7658 | DOI: 10.1038/ncomms8658 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


(Fig. 5a,b). Both azi1-1 and earli1-1 showed slower induction of
pathogenesis-related protein 1 (PR1) than WT after secondary
infection (Fig. 5c,d) indicating they have priming defects. The
earli1-1 plants were not generally hypersusceptible to P. syringae,
since the mock-treated controls of earli1-1 and WT showed
similar pathogen growth (Fig. 5a,b). Thus, EARLI1, the closest
AZI1 paralog, is a SAR/AZA-priming component.

AZI1 and EARLI1 are required for mSAR and ISR in Arabidopsis.
AZI1 and EARLI1 (as well as AZI3/4) are induced by MAMPs and
expressed in roots (genevestigator39). Local callose induction by
the MAMP flg22 was similar in azi1-1, earli1-1 and WT
(Supplementary Fig. 4b). However, we found that both AZI1
and EARLI1 are needed for systemic resistance induced by flg227

(Fig. 5e). We also tested the role of AZI1 and EARLI1 in ISR
triggered by root-colonizing P. fluorescens WCS417r8. After
inoculation of roots with P. fluorecens, only WT, but not azi1-1 or
earli1-1, showed a significant reduction of P. syringae growth in
distal-infected leaves (Fig. 5f). This indicates that AZI1 and
EARLI1 are needed for mSAR and ISR.

SAR complexes include LTP and LTP-like proteins. AZI1 can
form a complex with DIR132. To test whether EARLI1 might also
form complexes, we co-expressed pairwise combinations of
EARLI1, AZI1 and DIR1 in N. benthamiana. We detected
complexes that contained each pair of proteins tested, as
measured by co-immunoprecipitation (co-IP) (Fig. 6a). The
presence of highly dithiothreitol-resistant dimers/tetramers in the
blots (Supplementary Fig. 5) supports the idea that these 8CM
proteins form SAR complexes. Furthermore, DIR1:RFP co-
localized with AZI1:GFP and EARLI1:GFP at perinuclear ER
and plasmodesmata (Fig. 6b), as previously reported for AZI1/
DIR132. We also detected co-localization at sites that abut
chloroplasts, which are likely chloroplast–ER contact sites
(Fig. 6c) and possible stromule–ER contact sites (Fig. 6d). As
expected, no co-immunoprecipitation or co-localization was
found between control soluble GFP and DIR1:RFP (Fig. 6a,
Supplementary Fig. 6). Thus, 8CM-containing complexes may
connect organelles and structures in cells, which may be
important for transmission of systemic signals.

AZI1 and EARLI1 are needed locally for SAR establishment.
SAR components might act at one or more steps: during initial
immunization, later in distal tissue to establish a primed state
and/or during SAR manifestation. We used a Dex painting
method to drive local inducible AZI1:HA or EARLI1:HA
expression in azi1-1 plants only after Dex treatment (Fig. 7a, right
panels). When AZI1 or EARLI1 were expressed only at the local
site treated with SAR-inducing PmaDG6 bacteria, SAR was
restored, as evidenced by reduced P. syringae growth in distal
leaves (Fig. 7a). As expected, WT control plants showed normal
SAR with or without Dex treatment. The results suggest that
AZI1 and EARLI1 function similarly. That is, they are needed at a
critical threshold level at the local immunization site.

AZI1 and EARLI1 are needed for AZA uptake and movement.
The 8CM-domain proteins AZI1, EARLI1 and/or DIR1 are
candidates for transporting or acting in the perception of AZA,
which resembles a small lipid. Isotopically labelled AZA is
mobile in Arabidopsis, with a portion of heavy isotope- and/or
radio-labelled AZA remaining intact and a portion becoming
modified10,32. We applied 14C-AZA40 to different mutants and
monitored the distribution of label in whole plants or the uptake
into leaf discs. Movement of label from one leaf (the application
site) to total systemic tissues (aerial stem/leaves and roots) was

significantly reduced in azi1-1 and earli1-1 compared to Col WT
plants (Fig. 7b,c). In WT, a large amount of the signal that moved
to aerial tissues was detected in very young leaves (Supplementary
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Figure 5 | Induction of systemic defence in Arabidopsis azi1 and earli1

mutants. (a,b,e,f) Growth of the virulent bacteria PmaDG3 on WT Col-0,

azi1-1 and earli1-1 plants 3 days post infection (OD600¼0.0001). PmaDG3

was infiltrated in distal upper leaves after 2 days of lower leaf treatment

with mock (10 mM MgSO4) or strain PmaDG6 (OD600¼0.01) to test SAR

(a), control MES (mock) or AZA to test AZA-conferred systemic immunity

(b), water (mock) or 100 nM flg22 to test mSAR (e); or after 3 weeks of

mock (10 mM MgSO4) or Pf strain root inoculation to test ISR (f). The

average of c.f.u. per leaf disc plus/minus 95% confidence interval from four

a, three (b,e) and two (f) independent experiments (each one with eight

biological replicates) is shown. Graph y axes are in log10 scale. (c) PR1

protein levels in total extracts in WT Col-0 and azi1-1 and earli1-1 plants at

different times post infiltration of PmaDG3 (OD600¼0.01) to test PR1

priming in plants previously mock-treated or PmaDG6-treated to induce

SAR (as in a). The blots stained with Coomassie blue are presented to show

loading. Similar results were observed in four independent experiments.

(d) Quantification of PR1 levels in (c) PmaDG6 samples relative to the total

protein content in each CBB membrane lane as quantified by densitometry.

The average with standard error from four independent experiments are

shown. In a,b,e,f different letters indicate statistically significant differences

(Po0.01, analysis of variance (ANOVA), SNK test). Graph y axes are in

log10 scale. In d, the asterisk indicates statistically significant differences

versus WT at each time point determined using t-test (*Po0.05, n¼4). In

(c) and (d) hpi indicates hours post-infection.
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Fig. 7). Interestingly, based on the amount of label that exited the
treated leaf and was mobilized to aerial tissue (Fig. 7b,c), we
estimated that a lot of signal moved systemically to the roots. In
contrast, AZA systemic movement was not reduced in dir1-1
compared with Wassilewskija (Ws) WT parent plants (Fig. 7b,c).
Both azi1-1 and earli1-1 but not dir1 showed significant decreases
in label uptake into leaf discs (B25%) compared to WT (Fig. 7d).
Label uptake was the same in dir1-1 and WT WS leaf discs.
Systemic movement or uptake in leaf discs of 14C-sucrose was not
different between any mutants and the respective WT plants
(Supplementary Fig. 8a–c) indicating that these mutations are not
affecting the general phloematic fluxes. Yu et al.32 reported that
azi1 did not differ from WT in 14C-AZA movement. However,
accounting for the total pool of label applied to plants was not
done previously. In addition, here AZA was applied in a small
drop instead of infiltrated using a large volume of liquid, which
may affect how much AZA can be uploaded to reach the
vasculature. These data show that movement and uptake of AZA
(and possibly AZA derivatives) partially depends on AZI1 and
EARLI1, but not DIR1.

AZI1 subcellular dynamics. To gain insight into how AZI1 could
be functioning, we analysed its dynamics inside cells. Live cell
imaging of N. benthamiana showed that AZI1:GFP was present
in vesicle-like structures that moved rapidly to and from chlor-
oplasts to the cytoplasm (Fig. 8a). These vesicle-like structures
moved in close association with ER transcytoplasmic strands
connecting chloroplasts, ER and the PM (Supplementary Movie 3).
Moreover, using the AZI1 N-terminal GFP fusion, we observed
the movement of a chloroplast attached to the ER network
through a stromule (chloroplast/ER contact site) structure where
N-AZI1:GFP was localized (Fig. 8b and Supplementary Movie 4).
In contrast, DIR1:GFP showed dynamic movement, but mainly in
the ER (Supplementary Movie 5).

To study the dynamics of AZI1/ER contact sites in more detail,
we co-expressed an N-terminal AZI1:GFP fusion and the ER
marker BiP:RFP. Interestingly, we found highly dynamic co-
localized signals, particularly between the chloroplast-located
AZI1:GFP and BiP:RFP (Fig. 8c; Supplementary Movie 6,
Supplementary Movie 7). The pattern of movement of AZI1
and the AZI1/ER contact sites together with its regulation by
infection (Fig. 4c) is consistent with AZI1 complexes facilitating
transport of SAR signals, and connecting chloroplast envelope
membranes to different organelles and/or subcellular structures.

Discussion
SAR protects plants over an extended period and involves an
energy-saving priming of the defences in systemic (distal) tissues
after a first infection. We showed here that the AZI1 paralog
EARLI1 is a new SAR component and that along with AZI1, it is
also essential for AZA-conferred systemic resistance, mSAR and
ISR. Thus, these HyPRPs are part of a central mechanism used for
systemic disease resistance programs. Both AZI1 and EARLI1 are
needed for AZA movement to distal tissues. AZI1 and EARLI1
are membrane proteins localized in the PM, ER and, interestingly,
chloroplast outer envelopes. Production of SAR signals, including
AZA, occurs in chloroplasts22,41. Therefore, we propose that a
central function of AZI1/EARLI1, which are needed at the
immunization site, is to facilitate mobilization of SAR signals
from where they are made (chloroplasts) to vasculature uploading
sites (ER–plasmodesmata and PM/apoplast). Given their
requirement for efficient AZA mobilization, they likely also
have key roles in the movement of AZA during establishment of
SAR, mSAR and ISR. DIR1’s role may be more closely related to
signal perception10. Remarkably, chloroplast targeting of AZI1
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Figure 6 | AZI1, EARLI1 and DIR1 complexes and co-localization in

agrotransformed N. benthamiana. (a) Co-immunoprecipitation of AZI1,

EARLI1 and DIR1. Agrotransformed N. benthamiana tissues co-expressing

combinations of control GFP (GFP), AZI1:GFP/:HA, EARLI1:GFP/:HA or

DIR1:RFP/:HA were used. Complexes were immunoprecipitated with HA

antibody. IP: immunoprecipitation. Both input (bottom panels) and IP

(upper panels) protein samples were analysed by western blot using the

indicated antibodies. Similar results were observed in three (between AZI1/

DIR1 combinations) and two (between AZI1/EARLI1/DIR1 combinations)

independent experiments. Asterisks indicate unspecific bands. (b,c)

Confocal micrographs showing localization of co-expressed AZI1:GFP or

EARLI1:GFP and DIR1:RFP in N. benthamiana epidermal cells. (c) Close up

view of AZI1:GFP or EARLI1-GFP and DIR1:RFP co-localization at ER and

chloroplast–ER contact sites. (d) Z-series maximum intensity projection

showing close up view of AZI1:GFP and DIR1:RFP co-localization in

chloroplast–ER and stromule–ER contact sites. Arrowheads: co-localization

at ER, perinuclear ER and plasmodesmata; arrows: co-localization at

chloroplast/stromule–ER contact sites. The micrographs show GFP, green;

RFP, red; chloroplasts autofluorescence, blue (Chl). The yellow/orange

colour in the merged images indicates co-localization. Scale bars, 15mm (b)

and 5 mm (c,d).
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(and some AZI1 paralogs) employs an N-terminal bipartite signal
that to our knowledge was not described before in plants.

In Arabidopsis seedlings, AZA can move from local to distal
aerial tissues10. In adult plants, AZA and AZA derivatives are also
mobile32. Interestingly, AZA can also move from one leaf to
roots. This raises the possibility that AZA priming may have a
role in underground tissues. In support of this idea, foliar
pathogens can trigger disease resistance in roots42. Future studies
on this aspect is of major interest to know if/how aerial infection
can influence root defences or even shape the normal root-
associated microbiota.

AZI1 and EARLI1 are needed for normal movement of AZA
(or AZA-derived molecule(s)). Although AZA resembles a small
lipid, it is probable that the size/structure of AZA will not allow a
direct binding to AZI1/EARLI1’s 8CM–LTP motif30. Since AZA
may be esterified to a lipid until its release by a lipase22,43, AZI1/
EARLI1 may bind an AZA-carrying lipid(s). Thus, AZI1/EARLI1
may facilitate AZA movement by binding a lipid–AZA, such as
the polar lipidic AZA derivatives found in plants after AZA
treatment32.

Chloroplasts play key roles in plant defence against biotic
stresses44,45. This appears to be especially true during systemic
defence programs, where among the proposed SAR signals,
several are directly related to chloroplast metabolism10,12,15–17.

Indeed, AZA is generated in plastid membranes22. Moreover,
during SAR-inducing infections AZA levels increase10,12,32,
probably due to an increase of nitric oxide/reactive oxygen
species in chloroplasts31,46. AZI1, EARLI1 and AZI3 are
upregulated by AZA and/or conditions that promote non-
enzymatic lipid peroxidation47. Thus, the regulation and
chloroplast OEM location of these HyPRPs during infection is
consistent with them having roles in AZA mobilization.

MCSs between ER/chloroplast and stromules/ER (or transcy-
toplasmic ER strands) are major places were lipid exchange
occurs26–28. These MCSs are typically enriched in LTPs that
tether opposite membranes by protein–protein/protein–lipid
interactions24,25. The localization of AZI1 and EARLI1 and
enrichment of AZI1 at dynamic contact sites indicates that AZI1/
EARLI1 may function to facilitate AZA or lipid–AZA movement.
Moreover, MCSs not only assist in lipid exchange, but also ensure
and provide specificity29. This could explain why DIR1, an AZI1/
EARLI1 interactor and possible member of a ‘SAR complex’,
could be transporting lipidic signals other than AZA17,32.

AZI1, EARLI1 and AZI3–7 paralogs belong to the HyPRP
family proteins that were hypothesized to be associated with the
cell wall due to the abundance of prolines in the PRR30,48.
However, the PRR is needed for chloroplast OEM localization in
AZI1. Therefore, the role of the PRR in other HyPRPs outside the

0

50

100

150

200

250

300

c.
p.

m
 (

×
10

3 )

Treated leaf Total systemic tissueb

a a

b b b b

a
a a

a,b

0

5

10

15

c.
p.

m
 (

×
10

2 ) 
pe

r 
le

af
 d

is
c

d

b b

a
a

a

0

10

20

30

40

c.
p.

m
 (

×
10

2 )

a

b
b

a

a

c Systemic aerial tissue 

0

50

100

150

200

250

300

350

c.
p.

m
 (

×
10

3 )

Systemic root tissue 

a

b b

a
a

Mock PmaDG6

WT Dex:AZI1
(azi1-1) 

Dex

Dex:EARLI1
(azi1-1)

c.
f.u

. p
er

 le
af

 d
is

c

a
108

107

106

105

Dex:AZI1

Dex:EARLI1 

AZI1
EF1�

EARLI1
EF1�

a

b

a

b

a

b

a a a

b

a a
250
250

250
250– + – –+ +

B L S

B L S

W
T

az
i1-
1

ea
rli1
-1

W
T (W

s)

dir
1-
1

W
T

az
i1-
1

ea
rli1
-1

W
T (W

s)

dir
1-
1

W
T

az
i1-
1

ea
rli1
-1

W
T (W

s)

dir
1-
1

W
T

az
i1-
1

ea
rli1
-1

W
T (W

s)

dir
1-
1

Figure 7 | Functional roles of AZI1 and EARLI1 in SAR and AZA movement. (a) Rescue of azi1-1 SAR-defective phenotype by locally induced AZI1 or

EARLI1. Three lower leaves of Dex:AZI1:HA/azi1-1 and Dex:EARLI1:HA/azi1-1 were brushed with 3 mM Dex to locally induce AZI1/EARLI1, and 21 h later

immunized by infiltration with 10 mM MgSO4 (mock) or PmaDG6 (DG6). To test SAR, distal leaves were infected with PmaDG3 2 days later. The average of

c.f.u. per leaf disc ±95% confidence interval from four (WT and Dex:AZI1) and three (Dex:EARLI1) independent experiments (each with eight biological

replicates) is shown. Different letters indicate significant differences between treatments in WT, Dex:AZI1 and Dex:EARLI1 (Po0.01, analysis of variance

(ANOVA), SNK test). y Axes show log10 scale. Right panels: RT–PCR of AZI1 and EARLI1 transcripts. Leaves were collected (treated, L; distal, S) 21 h after

brushing L with 3mM Dex; B indicates basal (untreated) expression control. Expression of EF1a was used as an internal standard. (b–d) Movement and

uptake of [14C]azelaic acid (14C-AZA) in WT (Col-0, Ws) or mutants (azi1-1, earli1-1 and dir1-1). (b) In planta 14C-AZA movement. Quantification of

radioactivity remaining 24 h after application of 14C-AZA in treated leaf, white bar, and the estimated radiolabel in total systemic tissues (c.p.m. initially

applied minus c.p.m. remaining in the treated leaf), black bar. (c) Quantification of radioactivity in systemic aerial tissues (without treated leaf) 24 h after

application of 14C-AZA in the same plants as b, and estimation of radioactivity in roots (total systemic tissues estimated c.p.m. in b minus c.p.m. quantified

in aerial tissues). (b,c) Graphs represent the average with standard error from five independent experiments for WT and azi1-1 (n¼ 18) and three

independent experiments for earli1-1, Ws and dir1-1 (n¼ 10). (d) 14C-AZA uptake. Quantification of radioactivity in leaf discs after floating on 14C-AZA for

3 h followed by three washes during 1 h. The average with standard error from two independent experiments (n¼ 30) is shown. In b–d, different letters

indicate statistically significant differences between WT Col, azi1-1, earli1-1 and WT Ws, dir1-1 (Po0.01, ANOVA, SNK test).
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AZI1 family may be similar. Many chloroplast OEM proteins use
a signal anchor mechanism to target plastids, which requires a
transmembrane domain usually annotated as a SP of a certain
hydrophobicity33. These proteins were not described as having a
PRR and therefore there might be distinct mechanisms for
targeting the AZI1 family and perhaps other HyPRPs, possibly
due to a requirement for them in multiple subcellular sites.

AZI1 family proteins possess N-terminal bipartite ‘signals’
(putative SPþ PRR) with different lengths of PRRs that drive
dynamic localization between plastid OEMs, ER and/or the PM.
These proteins appear to use a targeting mechanism that involves
the ER/secretory pathway. Carbonic anhydrase 1 (CAH1) is one
of the very few higher plant proteins also known to target
chloroplast through the endomembrane system49. However,
CAH1 localizes to the stroma indicating its targeting
mechanism must be different from AZI1, at least in part.
Interestingly, Apicomplexa organisms use N-terminal bipartite
signals for plastid (apicoplast)-targeted proteins50. Apicoplast
targeting signals are characterized by a plastid transit peptide next
to the SP. An algorithm developed to predict apicoplast targeting
proteins based on the SP and an adjacent transit peptide (the
PATs program51) correctly predicts the plastid localizations of
AZI1 family members and CAH1. How this targeting system
works at the molecular level in higher plants will be an interesting
topic for future work.

AZI1 and EARLI1 are key factors in SAR-priming establish-
ment, needed specifically at the site of the first immunization,
possibly by affecting AZA or lipid–AZA mobilization from local
leaves to distal sites. An interesting finding is that AZI1:GFP that
complements azi1-1 is mainly detected in epidermal cells. We
speculate that these cells are a significant place for AZI1 function.
Pavement cells are the first contact point for interaction with the
environment and microbes. Importantly, their plastids are
specialized organelles in which fatty acids and cuticle components
destined for the epidermal cell surface are synthesized52. The fact
that fatty acids are the precursors of AZA and other oxylipins41

and an intact cuticle is needed for SAR13 supports the idea that
epidermal cells may be important for long-distance defence
signalling.

AZI1 and EARLI1 represent novel shared components between
ISR and SAR. Because AZA and other oxylipins (or lipid–
oxylipins) can be also generated in roots41,53, it is possible that
AZI1/EARLI1 could facilitate trafficking of these types of signals
from roots to aerial tissue. Interestingly, AZI1 is induced in roots
after ISR-inducing bacteria colonization54. A common feature of
different stress signalling pathways may be the remodelling of
chloroplast OEM lipids as well as PM lipids and reactive oxygen
species production55,56. Moreover, several HyPRPs from different
plant species have been reported to have roles in abiotic stress
tolerance38,57–59. Thus, it is also possible that all AZI1 family
members (and maybe other HyPRP proteins) may be adapted to
promote lipid-based signalling during defence induction under
diverse stresses.

Methods
Plants and vectors. All plants were 25- to 28-day-old Arabidopsis thaliana in the
Columbia-0 (Col-0) or WS background, except where indicated. azi1-1, earli1-1
(Col-0 background) and dir1-1 (WS background) were previously described10,11,58.
Plants were grown under 12-h day (08:00 to 20:00) and 12-h night conditions at
20 �C, 200–230mmol s� 1 m� 2 light at rosette level and 50–70% relative
humidity10. N. benthamiana were grown at 24 �C and with 16-h day light. Plants
were grown for 4 weeks before Agrobacterium tumefaciens-mediated transient
transformation.

All vectors and primers used in this study are listed in Supplementary Table 1.
The full coding region of Arabidopsis AZI1, EARLI1, AZI3, AZI5, AZI7 and DIR1
and the N-terminal region of AZI1, EARLI1, AZI3, AZI5 and AZI7 (SPþ PRR)
were amplified with PCR primers linked to specific sequences compatible with the
GATEWAY cloning procedure, and introduced into the plant expression vector
pBAV150(ref. 60). Full-length coding region of AZI1, EARLI1 and DIR1 were also
introduced in pBAV154 (ref. 60). In addition, AZI1 was cloned into pSITEII-7N1
expression vector (CD3-1646/ABRC61). To generate the D32–76AZI1 (AZI1DPRR)
proper fragments were linked by PCR creating the deletion and then introduced
into pBAV150. The chloroplast outer envelope protein marker OEP7 (OEP7:RFP)
and the ER marker BiP (BiP:RFP) fused to RFP were amplified by PCR from
pUC-OEP7:RFP and pUC-BiP:RFP vectors, kindly provided by Dr Inhwan
Hwang33, and introduced in pBAV154. All the resulting plasmids allowed the
expression of the transgenes with C-terminal GFP (pBAV150) or HA epitope tag
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Figure 8 | Dynamics of AZI1 in chloroplasts outer envelope by live

imaging confocal microscopy in agrotransformed N. benthamiana.

(a) Time series micrographs showing dynamic localization of AZI1:GFP

controlled by Dex-inducible promoter in vesicle-like structures moving in

(green arrowheads) and out (red arrowheads) from chloroplasts. (b) Time

series micrographs showing dynamic localization of N-terminal sequence

GFP fusion proteins of AZI1 controlled by Dex-inducible promoter in

chloroplast, stromule and ER network connections. White arrowhead:

stromule-localized AZI1:GFP, white arrow: ER-localized AZI1:GFP and yellow

arrowheads: chloroplast/ER contact site. (c) Time series micrographs

showing dynamic localization of N-terminal sequence GFP fusion proteins

of AZI1 and BiP:RFP in chloroplasts and ER network connections. White

arrowheads: dynamic chloroplast/ER contact sites. Scale bars, 5mm (a–c).
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(pBAV154) controlled by the Dex-inducible promoter. pSITEII-7N1 vector allowed
the expression of AZI1 with C-terminal GFP (Dendra2) driven by the constitutive
35S promoter. The vector allowing DIR1 expression fused to C-terminal RFP
(pSITE-DIR1:RFP) under constitutive promotor 35S, was a gift from Dr Pradeep
Kachroo12. The plastid-targeted GFP (chl:GFP) was obtained from ABRC (pt-gk/
CD3-995/ABRC61).

Transgenic plants were established by dipping azi1-1 mutant flowers into
suspensions of A. tumefaciens GV3101 strain harbouring the pBAV150:AZI1,
pBAV154:AZI1 and pBAV154:EARLI162, and then selected on Murashige and
Skoog media (Sigma-Aldrich) supplemented with Basta (10 mg ml� 1). F3 or F4

generation plants were used for experiments.

Systemic resistance assays. To evaluate systemic resistance, distal leaves were
syringe-inoculated with virulent P. syringae pv. maculicola ES4326 carrying an
empty vector (PmaDG3; optical density at a wavelength of 600 nm,
OD600¼ 0.0001)63 two days after SAR, mSAR or 3 weeks after ISR induction.
Growth was quantified using eight leaves from different plants 3 days after
PmaDG3 inoculation. For SAR induction, three lower leaves were infiltrated with
P. syringae pv. maculicola ES4326 strain carrying AvrRpt2 (PmaDG6;
OD600¼ 0.01)63. For mSAR, three lower leaves were infiltrated with 100 nM flg22.
ISR was induced by transplanting 12-day-old sand-grown seedlings into a soil/sand
mixture (12:5) inoculated with P. fluorescens WCS417r to a final density of
5� 107 c.f.u. g� 1 soil (mixed thoroughly with 109 c.f.u. ml� 1 suspension)8.

To analyse priming of PR1 induction, distal leaves from mock- or SAR-induced
plants were syringe-inoculated with PmaDG3 (OD600¼ 0.01) and protein samples
were obtained at different times post infection. At least three leaves from three
different plants were used per time point.

To analyse the local rescue of azi1-1 mutation by AZI1 or EARLI1, three lower
leaves of transgenic Arabidopsis azi1-1 plants carrying pBAV154:AZI1 or
pBAV154:EARLI1 constructs were gently painted (with a 1

4
00 Angler Shader

paintbrush, Princeton Art and Brush Co.) with 3 mM Dex plus 0.1% Tween 20
solution 21 h before inoculation of the same leaves with PmaDG6 used to trigger
SAR.

To show AZI1:GFP functionality in Arabidopsis transgenic azi1-1 plants
carrying pBAV150:AZI1 construct were sprayed with 30 mM Dex plus 0.1% Tween
20 solution 21 h before analysing SAR induction.

Exogenous application of AZA. AZA (C9H16O4, molecular weight 188.22, Sigma-
Aldrich) was dissolved in 5 mM 2-[N-morpholino]ethanesulfonic acid (MES, pH
5.6; Sigma-Aldrich) to increase its solubility and stabilize pH. Solutions of 1 mM
AZA or only MES (mock control) were directly infiltrated into three lower leaves
with a needleless syringe 2 days before PmaDG3 inoculation in systemic leaves10.

14C-AZA movement and uptake assays. For movement and uptake assays,
14C-AZA40 was used. For in planta movement, 14C-AZA stock solution (specific
activity 16 mCi mmol� 1) was evaporated to complete dryness under a stream of
nitrogen gas (to remove the acetonitrile and formic acid solvent). The dried
precipitate was dissolved to concentration of 0.5 mCi per 20 ml of 5 mM MES (pH
5.6) containing 0.1% Triton X-100 detergent. 14C-AZA was applied as a 20ml drop
to the abaxial side of a fully expanded Arabidopsis leaf (0.5 mCi per plant; covering
B3–5 mm2 of the leaf area). Plants were covered for 24 h to maintain humidity and
then quantified as follows: the treated leaf and the rest of the aerial tissue were
dried separately, cut in small pieces, placed in scintillation vials and dissolved in
scintillation cocktail for radioactivity quantification. To calculate the estimated
amount of label moved to root and total systemic tissues, we consider the initial
c.p.m. applied. Radioactivity (c.p.m.) was quantified in a liquid scintillation counter
(LS 6000 IC, Beckman). c.p.m. in the initial drop applied (4.6� 105 c.p.m.) was
determined by averaging measurements from three leaves that were drop-treated
with 14C-AZA and immediately dried. For 14C-sucrose movement control 0.5 mCi
(sucrose [14C(U)], 435 mCi mmol� 1, Perkin Elmer) was also used. 14C-sucrose
radioactivity in the initial drop applied was 5.9� 105 c.p.m..

For uptake assays 15 leaf discs (4 mm diameter) from 8–9 plants were collected
per replicate, incubated in 15.5 mM 14C-AZA/1 mM cold AZA solution
(0.744� 10� 3 mCi in 3 ml bathing medium; 5 mM MES; pH 5.6) for 3 h in a
six-well plate, washed three times with only 5 mM MES (pH 5.6) for a total of 1 h,
dried and dissolved in scintillation cocktail. For uptake control 14C-sucrose was
used64.

mRNA analysis. Total RNA isolation and reverse transcription were done using
Trizol reagent and Masterscript RT–PCR system, respectively, according to
manufacturers’ procedures (Invitrogen, Carlsbad, CA; 5 PRIME). AZI1 and
EARLI1 expression in local, distal and untreated tissues was tested by 32-cycle PCR.
Internal standard used for data normalization was EF1a. Oligonucleotide
sequences used as primers are presented in Supplementary Table 1. Uncropped
images from DNA gels are shown in Supplementary Fig. 9.

Subcellular localizations. For localization studies in transgenic Arabidopsis
carrying pBAV150:AZI1 construct, homozygous seedlings were sprayed with

30 mM Dex plus 0.1% Tween 20 solution and analysed by confocal microscopy 21 h
later. For localization studies in N. benthamiana, A. tumefaciens C58C1 or
LBA4404 strains harbouring the different constructs were infiltrated into leaves of
4-week-old plants. To express fusion proteins from pBAV150/154 vectors, 20 mM
Dex solution was infiltrated onto leaves 1 day after agro-infiltration. Fractionation
and confocal microscopy studies were done 21 h after Dex. For co-expression
studies Agrobacterium harbouring different constructs were infiltrated together.
Agrobacterium cultures were mixed immediately before infiltration.

Arabidopsis cotyledons and N. benthamiana leaves were prepared as
described65 and a Zeiss LSM710 laser scanning confocal microscope (Zeiss,
Germany) was used to visualize GFP fluorescence (excitation: 488 nm; emission:
505–530 nm), RFP fluorescence (excitation: 561 nm; emission: 570 to 620 nm) and
chlorophyll autofluorescence (excitation: 633; emission: 650–750 nm). Images were
taken using a LD C-Apochromat 40x/1.1 W Korr objective. Fluorescence in
different channels was acquired for the same field using a sequential acquisition
mode. For Z-series optical sections and time series video acquisition, images were
taken at 512� 512 pixels scanning resolution in maximum speed mode. Images,
Z-series sections and time series videos were processed using ImageJ (http://
rsb.info.nih.gov/ij), ZEN 2012 (Zeiss) and Adobe Photoshop software. ImageJ was
also used for co-localization analysis and the generation of co-localizing pixels
mask (http://rsb.info.nih.gov/ij/plugins/colocalization.html; thresholds¼ 50% and
ratio¼ 75%).

Fractionation. To obtain microsomal fractions66, leaf tissue (B1 g of
N. benthamiana leaves) was frozen and ground in liquid nitrogen to a fine powder
and then thawed in two volumes of ice-cold extraction buffer (50 mM Tris HCl, pH
7.5; 0.33 M sucrose; 5 mM EDTA; 150 mM NaCl and 1� complete protease
inhibitor cocktail from Roche). The crude extracts were filtered through two layers
of Miracloth and centrifuged at 10,000 g for 10 min to get total protein extract
(supernatant), which was further ultracentrifuged at 100,000 g for 60 min to get the
microsomal membrane and soluble fractions, respectively. Membrane pellets were
resuspended in extraction buffer or in buffers for membrane association strength
analysis.

Chloroplasts were isolated from 1 g of Arabidopsis or N. benthamiana leaves.
Intact chloroplasts were purified using Percoll gradients67: homogenized leaves in
Xpl buffer (0.33 M sorbitol, 50 mM HEPES pH 7.5, 2 mM EDTA, 1 mM MgCl2,
0.25% bovine serum albumin and 0.1% sodium ascorbate) were Miracloth-filtered,
pelleted (2,000 g) and resuspended to obtain a first total/impure chloroplast
fraction. This fraction was layered on two Percoll gradients (40–80%) and
centrifuged (9,000 g) to purify the intact chloroplasts from the interphase
boundary. Organelle purity was assessed by western blot using organelle-specific
marker antibodies (see western blot analysis).

To obtain apoplast extracts (intercellular washing fluid)34 from N.
benthamiana: fully expanded leaves of 4-week-old plants infiltrated with
Agrobacterium harbouring the different constructs were vacuum infiltrated with
sterile distilled water and leaf surfaces dried with absorbent paper before collection
of the intercellular washing fluid. To collect the intercellular washing fluid, leaves
were centrifuged in swinging buckets at 300 g for 15 min at 4 �C. Fluids were
lyophilized before resuspension for use in western blots.

Membrane association assay. Membrane association assays66 performed with
microsomal protein extracts from N. benthamiana leaves infiltrated with
Agrobacterium harbouring the different constructs. Extracts were treated with
1.5 M NaCl, 2 M urea, 1% Triton X-100, 1% NP-40þ 0.5% deoxycolate or 1% SDS,
respectively, at 22 �C for 2 h with gentle shaking and fractionated into soluble
supernatant or membrane pellet fractions by ultracentrifugation. Soluble fractions
were precipitated by trichloroacetic acid before immunoblotting.

Thermolysin protection assay. Chloroplast fractions isolated from N. ben-
thamiana leaves infiltrated with Agrobacterium harbouring the different constructs
were treated with thermolysin36. Chloroplasts were resuspended in buffer (0.33 M
sorbitol, 50 mM HEPES, pH 8) and thermolysin stock solution (1 mg ml� 1

thermolysin, 5 mM CaCl2, 0.33 M sorbitol, 50 mM HEPES, pH 8) added to give a
final concentration of 0.1 mg ml� 1 thermolysin. Treated chloroplast were
incubated for 30 min on ice, quenched by adding 10 mM EDTA and purified in a
40% Percoll cushion.

Western blot analysis and immunoprecipitations. Equal amounts of solubilized
total (or different fractions) proteins were separated by SDS–polyacrylamide gel
electrophoresis. Concentrations of protein extracts were measured by Bradford
assay. Primary antibodies used for western blots were as follows: GFP antibody
(Covance MMS-118P, 1:3,000; or Clontech cat. no. 632459, 1:3,000), HA antibody
(Covance 16B12, 1:1,750), HþATPase antibody (Agrisera AS07260, 1:7,500),
cytosolic FBP antibody (Agrisera AS04 043, 1:3,000), BiP antibody (SPA-818,
Stressgen, 1:3,000), ATPase b antibody68 (1:3,000), DIR1 antibody11,35 (1:20,000)
and PR1 antibody69 (1:3,000). For analysis of AZI1/EARLI1 native proteins from
Arabidopsis an anti-EARLI1 polyclonal antibody37 (that also recognizes AZI1) was
used (1:750). The loading buffer for AZI1/EARLI1 western blot samples omitted
reducing agents to allow detection of protein signals as described37. Secondary
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horseradish peroxidase-conjugated anti-rabbit or anti-mouse antibodies (Thermo
Scientific) were used at 1:1,000. SuperSignal West Pico/Femto stable peroxidase
(Thermo Scientific) was used to detect the signals. Gel-Pro analyzer software was
used to quantify bands and Coomassie blue on western blots by densitometry.

For immunoprecipitations, 1 g of N. benthamiana leaves were infiltrated with
Agrobacterium harbouring the different constructs was used. Total extracts were
isolated in two volumes of extraction buffer (50 mM Tris HCl pH 8.0, 10% glycerol,
0.5% sodium deoxycholate, 1% Igepal CA-630 from Sigma-Aldrich and complete
protease inhibitor cocktail from Roche). Cellular debris was removed by Miracloth
filtering, and 1 ml of supernatant was mixed with HA matrix (anti-HA affinity
matrix, rat monoclonal 3F10, Roche) and incubated with gentle shaking at 4 �C
ON. Matrix was then collected and washed 4–5 times with extraction buffer before
resuspension in loading buffer for western blot analysis.

Uncropped images from blot scans are shown in Supplementary Fig. 10.

Callose quantification. Callose deposits were quantified according to Kim and
Mackey70 with some modifications. Leaves from six plants for each genotype/
treatment were used for measurements. Water or 1 mM flg22 was infiltrated into
Arabidopsis leaves 16–18 h before fixing in ethanol and staining with aniline blue
(0.01% aniline blue in 150 mM K2HPO4, pH 9.5). Callose deposits were counted
using ImageJ software from images taken with an epifluorescence microscope
(Zeiss Axioskop, DAPI filter set). Data are shown as the number of deposits per
1.5 mm2.

Protein alignment. For AZI1 and DIR1 paralogs alignment ClustalW and
BoxShade were used (EMBnet node Switzerland; http://www.ch.embnet.org/).

Statistical analysis. Analyses in this study were done with a statistical software
package SigmaPlot v11.0 (Systat Software, Inc.). Analysis of variance (log-trans-
formed data for bacterial growth curves) followed by the Newman–Keuls (SNK)
post hoc test or one-tailed Student’s t-test were used as indicated in figure legends.
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