1,872 research outputs found

    Inclusive J/psi production at mid-rapidity in pp collisions at root s=5.02 TeV

    Get PDF
    Inclusive J/psi production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of root s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (vertical bar y vertical bar and are extracted and compared with results obtained at other collision energies.Peer reviewe

    Measurement of the Low-Energy Antideuteron Inelastic Cross Section

    Get PDF
    In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of 0.3 = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parametrization used in GEANT4 in the lowest momentum interval of 0.3Peer reviewe

    First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

    Get PDF
    This letter presents the first measurement of jet mass in Pb-Pb and Pb-Pb collisions at root s(NN) = 2.76 TeV and root s(NN) = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-k(T) jet algorithm and resolution parameter R = 0.4. The jets are measured in the pseudorapidity range |eta(jet)| <0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties. (C) 2017 The Author. Published by Elsevier B.V.Peer reviewe

    NEMESIS setup for Indirect Detection of WIMPs

    Get PDF
    We summarize the evidence for DM-like anomalies in neutron multiplicity spectra collected underground with Pb targets by three independent experiments: NEMESIS (at 210 m.w.e.) NMDS (at 583 m.w.e.), and ZEPLIN-II (at 2850 m.w.e.). A new analysis shows small but persistent anomalies at high neutron multiplicities. Adjusted for differences in detection efficiencies, the positions of the anomalies are consistent between the three systems. Also, the intensities match when corrected for the acquisition time and estimated detection efficiency. While the three measurements are inconclusive when analyzed separately, together, they exclude a statistical fluke to better than one in a million. To prove the existence of the anomalies above the 5-sigma discovery threshold, we propose to upgrade the current NEMESIS setup. The upgrade concept and the critical components of the new experiment are described. The upgraded setup would already acquire the needed data sample during the first year of operation. Additional information, vital for the physics interpretation of the analysis, will be obtained with a Cu target.Peer reviewe

    DM-like anomalies in neutron multiplicity spectra

    Get PDF
    Publisher Copyright: © 2022 Institute of Physics Publishing. All rights reserved.A new experiment collects data, since November 2019, at a depth of 210 m.w.e. in the Callio Lab in the Pyhasalmi mine in Finland. The setup, called NEMESIS (New Emma MEasurementS Including neutronS), incorporates infrastructure from the EMMA experiment with neutron and large-area plastic scintillator detectors. The experiment's primary aim is to combine muon tracking with position-sensitive neutron detection to measure precision yields, multiplicities, and lateral distributions of high-multiplicity neutron events induced by cosmic muons in various materials. The data are relevant for background evaluation of the deep-underground searches for Dark Matter (DM), neutrino-less double beta decay, etc. Preliminary analysis revealed anomalies in muon-suppressed neutron multiplicity spectra collected during a 344-day run (live time) with a 565 kg Pb target. The spectra, otherwise well described by an exponential fit, show three peaks at high multiplicities. Although still at a low statistical significance, these small excesses match the outcome of an earlier measurement. The nature of the anomalies remains unclear, but, in principle, they may be a signature of self-annihilation of a WIMP with a mass close to 13 GeV/c2. With that assumption, the expected cross-section would be around 10-42 cm2 for Spin-Dependent or 10-46 cm2 for Spin Independent interactions. We propose verifying this hypothesis with an upgraded NEMESIS experiment, able to collect an order of magnitude more data than this measurement. Based on the statistical uncertainty, analysis of the event rate indicates that cross-section limits for DM mass range of approximately 3-40 GeV/c2 can be investigated with such a setup.Peer reviewe
    • …
    corecore