164 research outputs found

    Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm

    Full text link
    Ionospheric conductance plays an important role in regulating the response of the magnetosphere‐ionosphere system to solar wind driving. Typically, models of magnetosphere‐ionosphere coupling include changes to ionospheric conductance driven by extreme ultraviolet ionization and electron precipitation. This paper shows that effects driven by the Farley‐Buneman instability can also create significant enhancements in the ionospheric conductance, with substantial impacts on geospace. We have implemented a method of including electrojet turbulence (ET) effects into the ionospheric conductance model utilized within geospace simulations. Our particular implementation is tested with simulations of the Lyon‐Fedder‐Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere. We examine the impact of including ET‐modified conductances in a case study of the geomagnetic storm of 17 March 2013. Simulations with ET show a 13% reduction in the cross polar cap potential at the beginning of the storm and up to 20% increases in the Pedersen and Hall conductance. These simulation results show better agreement with Defense Meteorological Satellite Program observations, including capturing features of subauroral polarization streams. The field‐aligned current (FAC) patterns show little differences during the peak of storm and agree well with Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) reconstructions. Typically, the simulated FAC densities are stronger and at slightly higher latitudes than shown by AMPERE. The inner magnetospheric pressures derived from Tsyganenko‐Sitnov empirical magnetic field model show that the inclusion of the ET effects increases the peak pressure and brings the results into better agreement with the empirical model.This material is based upon work supported by NASA grants NNX14AI13G, NNX13AF92G, and NNX16AB80G. The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work used the XSEDE and TACC computational facilities, supported by National Science Foundation grant ACI-1053575. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. We thank the AMPERE team and the AMPERE Science Center for providing the Iridium derived data products. All model output, simulation codes, and analysis routines are being preserved on the NCAR High-Performance Storage System and will be made available upon written request to the lead author of this publication. (NNX14AI13G - NASA; NNX13AF92G - NASA; NNX16AB80G - NASA; National Science Foundation; ACI-1053575 - National Science Foundation

    Radial transport of radiation belt electrons due to stormtime Pc5 waves

    Get PDF
    During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing <I>L</I>. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as <I>L</I>≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves

    Formation of zonal agro-eco clusters as a mechanism for the development of rural areas

    Get PDF
    Today, the degree of agricultural development, and, in the future, the level of national food security, the public health and the quality of life, are largely ensured by innovative developments in the field of alternative agriculture, the preservation of natural resources and, above all, the main production facility – land. At the same time, the unfilled market capacity of organic products and the significant land potential for the development of organic farming create all the necessary prerequisites for enhancing the competitiveness of Russian rural producers. The development of agricultural entrepreneurship towards the greening of land use, organic production and development of the domestic market for organic (ecological) products in the format of zonal agro-eco clusters is one of the strategic directions for implementing reforms in the agricultural sector. The paper presents the directions of the formation and development of zonal agro-eco clusters for the production, processing and sale of organic products in the agricultural regions of Russia.peer-reviewe

    対人関係の光と影 : 「絆」の形成、拒絶、そして崩壊の社会心理学的研究

    Get PDF
    Š 2015 Springer Science+Business Media New York. The feasibility of applying thermal analysis to study of oil-containing rocks and organic matter is reviewed. Using heavy crudes from the Ashal'cha and Mordovo-Karmal fields, the potential for analysis of the effectiveness of iron-containing precursors of aquathermolysis catalysts is demonstrated with use of data derived from thermal analysis. The thermal effects detected in the presence of the catalyst precursor, as compared with the original sample, reflect decomposition of the catalyst precursor and degradation processes for the components of the crude oil activated by the catalyst. It is shown that use of thermal analysis is feasible for preliminary selection or optimization of catalyst compositions for in-situ upgrading of crude oils, taking into account the activity of the catalyst relative to certain components of the crude in a specific temperature range

    Scaling in long term data sets of geomagnetic indices and solar wind Ďľ as seen by WIND spacecraft

    Get PDF
    We study scaling in fluctuations of the geomagnetic indices (AE, AU, and AL) that provide a measure of magnetospheric activity and of the Îľ parameter which is a measure of the solar wind driver. Generalized structure function (GSF) analysis shows that fluctuations exhibit self-similar scaling up to about 1 hour for the AU index and about 2 hours for AL, AE and Îľ when the most extreme fluctuations over 10 standard deviations are excluded. The scaling exponents of the GSF are found to be similar for the three AE indices, and to differ significantly from that of Îľ. This is corroborated by direct comparison of their rescaled probability density functions

    Scaling of solar wind e and the AU, AL and AE indices as seen by WIND

    Get PDF
    We apply the finite size scaling technique to quantify the statistical properties of fluctuations in AU, AL and AE indices and in the parameter that represents energy input from the solar wind into the magnetosphere. We find that the exponents needed to rescale the probability density functions (PDF) of the fluctuations are the same to within experimental error for all four quantities. This self-similarity persists for time scales up to ~4 hours for AU, AL and and up to ~2 hours for AE. Fluctuations on shorter time scales than these are found to have similar long-tailed (leptokurtic) PDF, consistent with an underlying turbulent process. These quantitative and model-independent results place important constraints on models for the coupled solar wind-magnetosphere system

    Structural changes of heavy oil in the composition of the sandstone in a catalytic and non-catalytic aquathermolysis

    Get PDF
    Š 2016,International Journal of Pharmacy and Technology. All rights reserved.Currently in connection with exhaustion of actively developed resources of light crude and the increasing consumption of energy carriers the development task solution of scavenger oil which will soon become the most important resource of stabilization and increase of oil production is relevant. The share of scavenger oil which,in particular,treatsuperviscous heavy oil steadily grows in overall balance therefore in the next years the gain of oil extraction will be provided at the expense of such naptha. It is accepted to call these resources of hydrocarbons non-conventional as their extraction requires application of the technologies and methods different from traditional methods of light oil production. One of such methods is steam impact on the layer which is characterized by downloading settlement volume of the heat carrier through delivery wells,creation of a thermal fringe and its subsequent advance by not heated water on layer towards production wells. At the same time use of various additional receptions,in particular,forcing of catalytic systems will allow to increase energy efficiency and to intensify process of heavy oil extraction. Relevance of such researches does not raise doubts. In this work the heavy native oil structural changes are studied; they lie in a sample of petrosaturated sandstone of the Volga-Ural province,being impacted by process of catalytic and not catalytic aquathermolysis
    • …
    corecore