1,678 research outputs found

    Design Elements for a Vertical School Case Study: Kaka‘ako.

    Get PDF
    D.Arch. Thesis. University of Hawaiʻi at Mānoa 2018

    Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator

    Get PDF
    In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady state transmission spectrum through the coupling waveguide. Alternatively, cavity ring-up spectroscopy (CRUS) sensing can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh \textit{Q}-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which might improve the data collection rate

    Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM

    Full text link
    We study phenomenological aspects of the MSSM with extra U(1) gauge symmetry. We find that the lightest Higgs boson mass can be increased up to 125 GeV, without introducing a large SUSY scale or large A-terms, in the frameworks of the CMSSM and gauge mediated SUSY breaking (GMSB) models. This scenario can simultaneously explain the discrepancy of the muon anomalous magnetic moment (muon g-2) at the 1 sigma level, in both of the frameworks, U(1)-extended CMSSM/GMSB models. In the CMSSM case, the dark matter abundance can also be explained.Comment: 19 pages, 3 figures; submitted versio

    Holographic Lattices, Dimers, and Glasses

    Full text link
    We holographically engineer a periodic lattice of localized fermionic impurities within a plasma medium by putting an array of probe D5-branes in the background produced by N D3-branes. Thermodynamic quantities are computed in the large N limit via the holographic dictionary. We then dope the lattice by replacing some of the D5-branes by anti-D5-branes. In the large N limit, we determine the critical temperature below which the system dimerizes with bond ordering. Finally, we argue that for the special case of a square lattice our system is glassy at large but finite N, with the low temperature physics dominated by a huge collection of metastable dimerized configurations without long-range order, connected only through tunneling events.Comment: 20 pages, 7 figures; v2: minor revisions mad

    Contracted Representation of Yang's Space-Time Algebra and Buniy-Hsu-Zee's Discrete Space-Time

    Full text link
    Motivated by the recent proposition by Buniy, Hsu and Zee with respect to discrete space-time and finite spatial degrees of freedom of our physical world with a short- and a long-distance scales, lPl_P and L,L, we reconsider the Lorentz-covariant Yang's quantized space-time algebra (YSTA), which is intrinsically equipped with such two kinds of scale parameters, λ\lambda and RR. In accordance with their proposition, we find the so-called contracted representation of YSTA with finite spatial degrees of freedom associated with the ratio R/λR/\lambda, which gives a possibility of the divergence-free noncommutative field theory on YSTA. The canonical commutation relations familiar in the ordinary quantum mechanics appear as the cooperative Inonu-Wigner's contraction limit of YSTA, λ0\lambda \to 0 and $R \to \infty.

    Lepton Flavor Violation and Cosmological Constraints on R-parity Violation

    Full text link
    In supersymmetric standard models R-parity violating couplings are severely constrained, since otherwise they would erase the existing baryon asymmetry before the electroweak transition. It is often claimed that this cosmological constraint can be circumvented if the baryon number and one of the lepton flavor numbers are sufficiently conserved in these R-parity violating couplings, because B/3-L_i for each lepton flavor is separately conserved by the sphaleron process. We discuss the effect of lepton flavor violation on the B-L conservation, and show that even tiny slepton mixing angles \theta_{12} \gsim {\cal O}(10^{-4}) and \theta_{23}, \theta_{13}\gsim {\cal O}(10^{-5}) will spoil the separate B/3-L_i conservation. In particular, if lepton flavor violations are observed in experiments such as MEG and B-factories, it will imply that all the R-parity violating couplings must be suppressed to avoid the B-L erasure. We also discuss the implication for the decay of the lightest MSSM particle at the LHC.Comment: 21 pages, 7 figures. v2: minor change

    Fourth-order gravity as the inflationary model revisited

    Full text link
    We revisit the old (fourth-order or quadratically generated) gravity model of Starobinsky in four space-time dimensions, and derive the (inflaton) scalar potential in the equivalent scalar-tensor gravity model via a Legendre-Weyl transform. The inflaton scalar potential is used to compute the (CMB) observables of inflation associated with curvature perturbations (namely, the scalar and tensor spectral indices, and the tensor-to-scalar ratio), including the new next-to-leading-order terms with respect to the inverse number of e-foldings. The results are compared to the recent (WMAP5) experimental bounds. We confirm both mathematical and physical equivalence between f(R) gravity theories and the corresponding scalar-tensor gravity theories.Comment: 10 pages, 1 figure, 1 table, LaTeX; few comments added, style improved, references added and update
    corecore