869 research outputs found

    ParFORM: recent development

    Full text link
    We report on the status of our project of parallelization of the symbolic manipulation program FORM. We have now parallel versions of FORM running on Cluster- or SMP-architectures. These versions can be used to run arbitrary FORM programs in parallel.Comment: 5 pages, 6 Encapsulated postscript figures, LaTeX2e, uses espcrc2.sty (included). Talk given at ACAT0

    Unification in 5D SO(10)

    Full text link
    Gauge unification in a five dimensional supersymmetric SO(10) model compactified on an orbifold S1/(Z2×Z2)S^1/(Z_2 \times Z_2^{\prime}) is studied. One orbifolding reduces N=2 supersymmetry to N=1, and the other breaks SO(10) to the Pati-Salam gauge group \ps. Further breaking to the standard model gauge group is made through the Higgs mechanism on one of the branes. The differences of the three gauge couplings run logarithmically even in five dimensions and we can keep the predictability for unification as in four dimensional gauge theories. We obtain an excellent prediction for gauge coupling unification with a cutoff scale M3×1017M_* \sim 3 \times 10^{17} GeV and a compactification scale Mc1.5×1014M_c \sim 1.5 \times 10^{14} GeV. Finally, although proton decay due to dimension 5 operators may be completely eliminated, the proton decay rate in these models is sensitive to the placement of matter multiplets in the 5th dimension, as well as to the unknown physics above the cutoff scale.Comment: 33 pages, one reference added and fig. 3 caption correcte

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.

    Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance

    Full text link
    This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.

    A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events

    Full text link
    Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy and momentum constraint methods. The results are expressed as deviations from the nominal LEP centre-of-mass energy, measured using other techniques. The results are found to be compatible with the LEP Energy Working Group estimates for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.
    corecore