45 research outputs found

    Quantum molecular dynamics simulations for the nonmetal-to-metal transition in fluid helium

    Get PDF
    We have performed quantum molecular dynamics simulations for dense helium to study the nonmetal-to-metal transition at high pressures. We present new results for the equation of state and the Hugoniot curve in the warm dense matter region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity is derived. The nonmetal-to-metal transition is identified at about 1 g/ccm. We compare with experimental results as well as with other theoretical approaches, especially with predictions of chemical models.Comment: 4 pages, 5 figure

    Monte Carlo results for the hydrogen Hugoniot

    Full text link
    We propose a theoretical Hugoniot obtained by combining results for the equation of state (EOS) from the Direct Path Integral Monte Carlo technique (DPIMC) and those from Reaction Ensemble Monte Carlo (REMC) simulations. The main idea of such proposal is based on the fact that DPMIC provides first-principle results for a wide range of densities and temperatures including the region of partially ionized plasmas. On the other hand, for lower temperatures where the formation of molecules becomes dominant, DPIMC simulations become cumbersome and inefficient. For this region it is possible to use accurate REMC simulations where bound states (molecules) are treated on the Born-Oppenheimer level using a binding potential calculated by Kolos and Wolniewicz. The remaining interaction is then reduced to the scattering between neutral particles which is reliably treated classically applying effective potentials. The resulting Hugoniot is located between the experimental values of Knudson {\textit{et al.}} \cite{1} and Collins {\textit{et al.}} \cite{2}.Comment: 10 pges, 2 figures, 2 table

    Path integral Monte Carlo calculations of helium and hydrogen-helium plasma thermodynamics and of the deuterium shock Hugoniot

    Full text link
    In this work we calculate the thermodynamic properties of hydrogen-helium plasmas with different mass fractions of helium by the direct path integral Monte Carlo method. To avoid unphysical approximations we use the path integral representation of the density matrix. We pay special attention to the region of weak coupling and degeneracy and compare the results of simulation with a model based on the chemical picture. Further with the help of calculated deuterium isochors we compute the shock Hugoniot of deuterium. We analyze our results in comparison with recent experimental and calculated data on the deuterium Hugoniot.Comment: 7 pages, 5 Postscript figures, accepted for publication in J. Phys. A: Math. Ge

    Partially ionized plasmas in electromagnetic fields

    Full text link
    The interaction of partially ionized plasmas with an electromagnetic field is investigated using quantum statistical methods. A general statistical expression for the current density of a plasma in an electromagnetic field is presented and considered in the high field regime. Expressions for the collisional absorption are derived and discussed. Further, partially ionized plasmas are considered. Plasma Bloch equations for the description of bound-free transitions are given and the absorption coefficient as well as rate coefficients for multiphoton ionization are derived and numerical results are presented.Comment: 18 pages, 8 figures, accepted for publication in J. Phys.: Conf. Se

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Маркшейдерська школа Національного гірничого університету

    Get PDF
    Викладена історія створення та розвитку маркшейдерської школи в НГУ протягом 110 років.Изложена история создания и развития маркшейдерской школы в НГУ в течение 110 лет.History of creation and development ofsurveyor school is expounded in NMU during 110 years

    Phase Transition in Strongly Degenerate Hydrogen Plasma

    Full text link
    Direct fermionic path-integral Monte-Carlo simulations of strongly coupled hydrogen are presented. Our results show evidence for the hypothetical plasma phase transition. Its most remarkable manifestation is the appearance of metallic droplets which are predicted to be crucial for the electrical conductivity allowing to explain the rapid increase observed in recent shock compression measurments.Comment: 1 LaTeX file using jetpl.cls (included), 5 ps figures. Manuscript submitted to JETP Letter
    corecore