23 research outputs found

    Mitotic Recombination Accelerates Adaptation in the Fungus Aspergillus nidulans

    Get PDF
    Understanding the prevalence of sexual reproduction in eukaryotes is a hard problem. At least two aspects still defy a fully satisfactory explanation, the functional significance of genetic recombination and the great variation among taxa in the relative lengths of the haploid and diploid phases in the sexual cycle. We have performed an experimental study to explore the specific advantages of haploidy or diploidy in the fungus Aspergillus nidulans. Comparing the rate of adaptation to a novel environment between haploid and isogenic diploid strains over 3,000 mitotic generations, we demonstrate that diploid strains, which during the experiment have reverted to haploidy following parasexual recombination, reach the highest fitness. This is due to the accumulation of recessive deleterious mutations in diploid nuclei, some of which show their combined beneficial effect in haploid recombinants. Our findings show the adaptive significance of mitotic recombination combined with flexibility in the timing of ploidy level transition if sign epistasis is an important determinant of fitness

    Interspecies virus transfer via protoplast fusions between Fusarium poae and black Aspergillus strains

    Get PDF
    Similarities between the genome organisation of dsRNA mycoviruses and dsRNA patterns in different fungal species suggest a relatedness between these viruses, which could be the result of co-evolved infections or of interspecies transfer. Such interspecies transfer between species is suggested by our observation of transfer and maintenance of mycoviral dsRNAs between Fusarium and Aspergillus via protoplast fusion

    A third unlinked gene controlling the pyruvate dehydrogenase complex in Aspergillus nidulans.

    No full text
    Pyruvate dehydrogenase complex mutants of Aspergillus nidulans were obtained by ultraviolet treatment and enrichment procedures. Among 160 glycolytic mutants, 86 pyruvate dehydrogenase complex mutants (including some temperature-sensitive mutants) were found. In addition to genes pdhA and pdhB, which are described in previous studies, a third gene, pdhC, controlling the function of the enzyme complex, was identified. The three genes were not linked and were mapped in the following linkage groups: pdhA in group I, pdhB in group V, and pdhC in group VIII, where it was the first marker on the left arm

    Isolation and Characterization of Sexual Sporulation Mutants of Aspergillus nidulans

    No full text
    For the genetic dissection of sexual sporulation in Aspergillus nidulans, we started a collection of ascosporeless mutants. After mutagenization of conidiospores with high doses of UV, we isolated 20 mutants with defects in ascospore formation. We crossed these mutants in two successive rounds with the wild-type strain. Eighteen of the 20 isolated mutants produced progeny with the original mutant phenotype in these crosses, and these mutants were further analyzed. All 18 analyzed mutations were recessive to wild type. We assigned them to 15 complementation groups, based on crosses between mutants. The mutants could be classified as follows according to their cytological phenotype: (1) no croziers, (2) arrest at prekaryogamy, (3) arrest in early meiotic prophase, (4) arrest in late meiotic prophase, (5) arrest in meiotic metaphase I, (6) defective postmeiotic mitosis and/or deliniation of ascospores, and (7) slow progression through the postmeiotic stages of ascospore formation. A large proportion of the mutants, namely 11 of 18, arrested in meiotic prophase or metaphase I. We discuss a possible approach for isolating the wild-type alleles of the genes that carry the sexual sporulation mutations

    Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model

    No full text
    Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be sufficient to maintain sex in the short term are met in nature. Our study addresses a largely overlooked hypothesis, proposing that sex could be maintained in the short term by advantages due to functions linked with sex, but not related to recombination. These advantages would be so essential that sex could not be lost in the short term. Here, we used the fungus Aspergillus nidulans to experimentally test predictions of this hypothesis. Specifically, we were interested in (i) the short-term deleterious effects of recombination, (ii) possible nonrecombinatorial advantages of sex particularly through the elimination of mutations and (iii) the outcrossing rate under choice conditions in a haploid fungus able to reproduce by both outcrossing and haploid selfing. Our results were consistent with our hypotheses: we found that (i) recombination can be strongly deleterious in the short term, (ii) sexual reproduction between individuals derived from the same clonal lineage provided nonrecombinatorial advantages, likely through a selection arena mechanism, and (iii) under choice conditions, outcrossing occurs in a homothallic species, although at low rate

    Genetic analysis in the asexual fungus aspergillus niger

    Get PDF
    The genetics of A. niger has been developed since 1980. An overview is presented of the advances in developing methods and collecting data. Important tools have been a) the application of essentially different methods to isolate mutants, b) the adaptation to A. niger ofA. nidulans methodology for analysis of the parasexual cycle, c) the choice of marker genes, and in some cases the artificial introduction of such genes, to select homozygous segregants arising from mitotic recombination. With the use of parasexual recombination, a genetic linkage map of A. niger has been established. In total, 110 nuclear and 1 cytoplasmic (mitochondrial) markers are available. The application of A. niger genetics in applied research is illustrated by examples

    Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    No full text
    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with terminal inverted repeats and encodes a DNA and a RNA polymerase. Here we test whether pAL2-1 homologs cause rapid aging independent of intrinsic and external conditions. We first analyzed a natural population of P. anserina and in 40% of the 112 isolates we detected pAL2-1 homologous plasmids. Though the lifespan varied considerably among the strains, plasmid-infected wild-type strains are on average shorter lived than plasmid-free strains and typically show a reduced lifespan extending effect of calorie restriction (CR). However, interesting exceptions were found, inviting further study. To further investigate the effect of pAL2-1 homologs under various conditions, we constructed and analyzed isogenic lines with and without the plasmid. We found that the presence of pAL2-1 homologs did not significantly affect growth rate as suggested by the population analysis, but reduced lifespan under all conditions. This effect was particularly clear for the lifespan extending conditions tested (CR, low temperature, antibiotics) supporting the idea that pAL2-1 homologs are additional senescence factors independent of the intrinsic senescence determinants

    Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina

    No full text
    In fungi, meiotic drive is observed as spore killing. In the secondarily homothallic ascomycete Podospora anserina it is characterized by the abortion of two of the four spores in the ascus. We have identified seven different types of meiotic drive elements (Spore killers). Among 99 isolates from nature, six of these meiotic drive elements occurred in a local population. Spore killers comprise 23␘f the natural population of P. anserina in Wageningen, The Netherlands, sampled from 1991 to 1997. One Spore-killer type was also found in a French strain dating from 1937. All other isolates found so far are sensitive to spore killing. All seven Spore killer types differ in the percentage of asci that show killing and in their mutual interactions. Interactions among Spore killer types showed either mutual resistance or dominant epistasis. Most killer elements could be assigned to linkage group III but are not tightly linked to the centromere
    corecore