517 research outputs found

    Non-Local Product Rules for Percolation

    Full text link
    Despite original claims of a first-order transition in the product rule model proposed by Achlioptas et al. [Science 323, 1453 (2009)], recent studies indicate that this percolation model, in fact, displays a continuous transition. The distinctive scaling properties of the model at criticality, however, strongly suggest that it should belong to a different universality class than ordinary percolation. Here we introduce a generalization of the product rule that reveals the effect of non-locality on the critical behavior of the percolation process. Precisely, pairs of unoccupied bonds are chosen according to a probability that decays as a power-law of their Manhattan distance, and only that bond connecting clusters whose product of their sizes is the smallest, becomes occupied. Interestingly, our results for two-dimensional lattices at criticality shows that the power-law exponent of the product rule has a significant influence on the finite-size scaling exponents for the spanning cluster, the conducting backbone, and the cutting bonds of the system. In all three cases, we observe a continuous variation from ordinary to (non-local) explosive percolation exponents.Comment: 5 pages, 4 figure

    Non-Newtonian fluid flow through three-dimensional disordered porous media

    Full text link
    We investigate the flow of various non-Newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of ({\it i}) the disordered geometry of the pore space, ({\it ii}) the fluid rheological properties, and ({\it iii}) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions. This anomalous condition of ``enhanced transport'' represents a novel feature for flow in porous materials.Comment: 5 pages, 5 figures. This article appears also in Physical Review Letters 103 194502 (2009

    Nanopercolation

    Full text link
    We investigate through direct molecular mechanics calculations the geometrical properties of hydrocarbon mantles subjected to percolation disorder. We show that the structures of mantles generated at the critical percolation point have a fractal dimension df2.5d_{f} \approx 2.5. In addition, the solvent access surface AsA_{s} and volume VsV_{s} of these molecules follow power-law behavior, AsLαAA_{s} \sim L^{\alpha_A} and VsLαVV_{s} \sim L^{\alpha_V}, where LL is the system size, and with both critical exponents αA\alpha_A and αV\alpha_V being significantly dependent on the radius of the accessing probing molecule, rpr_{p}. Our results from extensive simulations with two distinct microscopic topologies (i.e., square and honeycomb) indicate the consistency of the statistical analysis and confirm the self-similar characteristic of the percolating hydrocarbons. Due to their highly branched topology, some of the potential applications for this new class of disordered molecules include drug delivery, catalysis, and supramolecular structures.Comment: 4 pages, 5 figure

    Anisotropic generalization of Stinchcombe's solution for conductivity of random resistor network on a Bethe lattice

    Full text link
    Our study is based on the work of Stinchcombe [1974 \emph{J. Phys. C} \textbf{7} 179] and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi [1974 \emph{Phys. Rev. B} \textbf{9} 4575] for the regular lattice.Comment: 14 pages, 2 figure

    Non-universality of elastic exponents in random bond-bending networks

    Full text link
    We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod networks with freely rotating cross-links. Near the transition, networks are dominated by bending modes and the elastic modulii vanish with an exponent f=3.0\pm0.2, in contrast with central force percolation which shares the same geometric exponents. This indicates that universality for geometric quantities does not imply universality for elastic ones. The implications of this result for actin-fiber networks is discussed.Comment: 4 pages, 3 figures, minor clarifications and amendments. To appear in PRE Rap. Com

    Localization of elastic waves in heterogeneous media with off-diagonal disorder and long-range correlations

    Full text link
    Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heterogeneous media which are characterized by a broad distribution of the elastic constants. Gaussian-white distributed elastic constants, as well as those with long-range correlations with non-decaying power-law correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic moduli of rock at large length scales may be characterized by long-range power-law correlation functions. Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime in {\it any} dimension. We have numerically checked the RG results using the transfer-matrix method and direct numerical simulations for one- and two-dimensional systems, respectively.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Transport on exploding percolation clusters

    Full text link
    We propose a simple generalization of the explosive percolation process [Achlioptas et al., Science 323, 1453 (2009)], and investigate its structural and transport properties. In this model, at each step, a set of q unoccupied bonds is randomly chosen. Each of these bonds is then associated with a weight given by the product of the cluster sizes that they would potentially connect, and only that bond among the q-set which has the smallest weight becomes occupied. Our results indicate that, at criticality, all finite-size scaling exponents for the spanning cluster, the conducting backbone, the cutting bonds, and the global conductance of the system, change continuously and significantly with q. Surprisingly, we also observe that systems with intermediate values of q display the worst conductive performance. This is explained by the strong inhibition of loops in the spanning cluster, resulting in a substantially smaller associated conducting backbone.Comment: 4 pages, 4 figure

    A mean field description of jamming in non-cohesive frictionless particulate systems

    Full text link
    A theory for kinetic arrest in isotropic systems of repulsive, radially-interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the non-trivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description, and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.Comment: 9 pages, 3 figs; additional clarification of different elastic moduli exponents, plus typo fix. To appear in PR

    Universal Formulae for Percolation Thresholds

    Full text link
    A power law is postulated for both site and bond percolation thresholds. The formula writes pc=p0[(d1)(q1)]ad bp_c=p_0[(d-1)(q-1)]^{-a}d^{\ b}, where dd is the space dimension and qq the coordination number. All thresholds up to dd\rightarrow \infty are found to belong to only three universality classes. For first two classes b=0b=0 for site dilution while b=ab=a for bond dilution. The last one associated to high dimensions is characterized by b=2a1b=2a-1 for both sites and bonds. Classes are defined by a set of value for {p0; a}\{p_0; \ a\}. Deviations from available numerical estimates at d7d \leq 7 are within ±0.008\pm 0.008 and ±0.0004\pm 0.0004 for high dimensional hypercubic expansions at d8d \geq 8. The formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include

    Fracture of disordered solids in compression as a critical phenomenon: I. Statistical mechanics formalism

    Get PDF
    This is the first of a series of three articles that treats fracture localization as a critical phenomenon. This first article establishes a statistical mechanics based on ensemble averages when fluctuations through time play no role in defining the ensemble. Ensembles are obtained by dividing a huge rock sample into many mesoscopic volumes. Because rocks are a disordered collection of grains in cohesive contact, we expect that once shear strain is applied and cracks begin to arrive in the system, the mesoscopic volumes will have a wide distribution of different crack states. These mesoscopic volumes are the members of our ensembles. We determine the probability of observing a mesoscopic volume to be in a given crack state by maximizing Shannon's measure of the emergent crack disorder subject to constraints coming from the energy-balance of brittle fracture. The laws of thermodynamics, the partition function, and the quantification of temperature are obtained for such cracking systems.Comment: 11 pages, 2 figure
    corecore