599 research outputs found
Correlation of Atrial Fibrillation with Left Atrial Volume in Patients with Mitral Stenosis. a Single Centre Study From Pakistan
Background: Rheumatic heart disease has a strong association with mitral valve stenosis. Atrial fibrillation is one of the most common complications of this condition and is a poor prognostic factor. Early detection and prompt management of atrial fibrillation can help to improve the quality of life and increase the life expectancy of the patients. We carried out this study to investigate the significance of left atrial volumetric changes in mitral stenosis and its correlation with atrial fibrillation.
Methodology: We audited the data of 60 patients of rheumatic heart disease who had mitral valve stenosis. The patients were randomized into atrial fibrillation (Group A) and normal sinus rhythm (Group B). We conducted this cross-sectional analytical study at Cardiology Department, Mayo Hospital, Lahore, from 1st February 2017 to 31st January 2018. We only included those patients who consented to be a part of this study and fulfilled our predefined inclusion criteria. Left atrial volume was measured by prolate ellipse method and biplane methods on echocardiography. The Data was analyzed on SPSS v20.
Results: Sixty patients were included in the study. Among the subjects, thirty-six (60%) were males, and twenty-four (40%) were females. Atrial fibrillation was noted in 43.33% of the patients of mitral valve stenosis. There was a marked difference in the mean volume of the left atrium among the two groups. We observed that the mean area of the mitral valve for Group A patients was larger than that of patients in Group B. Our study showed an inverse correlation between left atrial volume and mitral valve area among Group A patients.
Conclusion: Patients of mitral stenosis are at an increased risk of developing atrial fibrillation if the left atrial volume is increasing. All patients with mitral stenosis should have routine echocardiography & measurement of left atrial volumes, so that proper treatment can be started if the left atrial volume is increasing, to prevent atrial fibrillation
Removable silicon insertion stiffeners for neural probes using polyethylene glycol as a biodissolvable adhesive
Abstract not provide
Recommended from our members
Microfluidic System for Solution Array Based Bioassays
The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for biodefense, protein expression studies, and other applications
Towards an anti-fibrotic therapy for scleroderma: targeting myofibroblast differentiation and recruitment
BACKGROUND: In response to normal tissue injury, fibroblasts migrate into the wound where they synthesize and remodel new extracellular matrix. The fibroblast responsible for this process is called the myofibroblast, which expresses the highly contractile protein alpha-smooth muscle actin (alpha-SMA). In normal tissue repair, the myofibroblast disappears. Conversely, abnormal myofibroblast persistence is a key feature of fibrotic dieases, including scleroderma (systemic sclerosis, SSc). Myofibroblasts can be derived from differentiation of local resident fibroblasts or by recruitment of microvascular pericytes.
CLINICAL PROBLEM ADDRESSED: Controlling myofibroblast differentiation and persistence is crucial for developing anti-fibrotic therapies targeting SSc.
BASIC SCIENCE ADVANCES: Insights have been recently generated into how the proteins transforming growth factor beta (TGFbeta), endothelin-1 (ET-1), connective tissue growth factor (CCN2/CTGF) and platelet derived growth factor (PDGF) contribute to myofibroblast differentiation and pericyte recruitment in general and to the persistent myofibroblast phenotype of lesional SSc fibroblast, specifically.
RELEVANCE TO CLINICAL CARE: This minireview summarizes recent findings pertinent to the origin of myofibroblasts in SSc and how this knowledge might be used to control the fibrosis in this disease.
CONCLUSIONS: TGFbeta, ET-1, CCN2 and PDGF are likely to cooperate in driving tissue repair and fibrogenic responses in fibroblasts. TGFbeta, ET-1 and CCN2 appear to contribute to myofibroblast differentiation; PDGF appears to be involved with pericyte recruitment. Thus, different therapeutic strategies may exist for targeting the multisystem fibrotic disorder SSc
Recommended from our members
The Zeta Potential of Surface-Functionalized Metallic Nanorod Particles in Aqueous Solution
Metallic nanoparticles suspended in aqueous solutions, and functionalized with chemical and biological surface coatings, are important elements in basic and applied nanoscience research. Many applications require an understanding of the electrokinetic or colloidal properties of such particles. In this paper we describe the results of experiments to measure the zeta potential of metallic nanorod particles in aqueous saline solutions, including the effects of pH, ionic strength, metallic composition, and surface functionalization state. Particle substrates tested include gold, silver, and palladium monometallic particles as well as gold/silver bimetallic particles. Surface functionalization conditions included 11-mercaptoundecanoic acid (MUA), mercaptoethanol (ME), and mercaptoethanesulfonic acid (MESA) self-assembled monolayers (SAMs), as well as MUA layers subsequently derivatized with proteins. Zeta potential data for typical charge-stabilized polystyrene particles are also presented for comparison. Experimental data are compared with theory. The results of these studies are useful in predicting and controlling the aggregation, adhesion, and transport of functionalized metallic nanoparticles within microfluidic devices and other systems
Severe aortic and arterial aneurysms associated with a TGFBR2 mutation.
BACKGROUND: A 24-year-old man presented with previously diagnosed Marfan\u27s syndrome. Since the age of 9 years, he had undergone eight cardiovascular procedures to treat rapidly progressive aneurysms, dissection and tortuous vascular disease involving the aortic root and arch, the thoracoabdominal aorta, and brachiocephalic, vertebral, internal thoracic and superior mesenteric arteries. Throughout this extensive series of cardiovascular surgical repairs, he recovered without stroke, paraplegia or renal impairment.
INVESTIGATIONS: CT scans, arteriogram, genetic mutation screening of transforming growth factor beta receptors 1 and 2.
DIAGNOSIS: Diffuse and rapidly progressing vascular disease in a patient who met the diagnostic criteria for Marfan\u27s syndrome, but was later rediagnosed with Loeys-Dietz syndrome. Genetic testing also revealed a de novo mutation in transforming growth factor beta receptor 2.
MANAGEMENT: Regular cardiovascular surveillance for aneurysms and dissections, and aggressive surgical treatment of vascular disease
Chronic, multi-contact, neural interface for deep brain stimulation
Abstract not provide
TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A
Transcription-blocking DNA lesions are removed by transcription-coupled nucleotide excision repair (TC-NER) to preserve cell viability. TC-NER is triggered by the stalling of RNA polymerase II at DNA lesions, leading to the recruitment of TC-NER-specific factors such as the CSA-DDB1-CUL4A-RBX1 cullin-RING ubiquitin ligase complex (CRLCSA). Despite its vital role in TC-NER, little is known about the regulation of the CRLCSA complex during TC-NER. Using conventional and cross-linking immunoprecipitations coupled to mass spectrometry, we uncover a stable interaction between CSA and the TRiC chaperonin. TRiC's binding to CSA ensures its stability and DDB1-dependent assembly into the CRLCSA complex. Consequently, loss of TRiC leads to mislocalization and depletion of CSA, as well as impaired transcription recovery following UV damage, suggesting defects in TC-NER. Furthermore, Cockayne syndrome (CS)-causing mutations in CSA lead to increased TRiC binding and a failure to compose the CRLCSA complex. Thus, we uncover CSA as a TRiC substrate and reveal that TRiC regulates CSA-dependent TC-NER and the development of CS
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
- …