10,796 research outputs found

    SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Get PDF
    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured

    A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater

    Get PDF
    A compact, low-cost atmospheric pressure, chemical ionization mass spectrometer ("mini-CIMS") has been developed for continuous underway shipboard measurements of dimethylsulfide (DMS) in seawater. The instrument was used to analyze DMS in air equilibrated with flowing seawater across a porous Teflon membrane equilibrator. The equilibrated gas stream was diluted with air containing an isotopically-labeled internal standard. DMS is ionized at atmospheric pressure via proton transfer from water vapor, then declustered, mass filtered via quadrupole mass spectrometry, and detected with an electron multiplier. The instrument described here is based on a low-cost residual gas analyzer (Stanford Research Systems), which has been modified for use as a chemical ionization mass spectrometer. The mini-CIMS has a gas phase detection limit of 220 ppt DMS for a 1 min averaging time, which is roughly equivalent to a seawater DMS concentration of 0.1 nM DMS at 20°C. The mini-CIMS has the sensitivity, selectivity, and time response required for underway measurements of surface ocean DMS over the full range of oceanographic conditions. The simple, robust design and relatively low cost of the instrument are intended to facilitate use in process studies and surveys, with potential for long-term deployment on research vessels, ships of opportunity, and large buoys

    Progress report on the stratigraphy, sedimentology and significance of the Kimerot and Bear Creek groups, Kilohigok Basin, District of Mackenzie

    Get PDF
    Some results of ongoing field investigations of the Kimerot and Bear Creek groups are summarized as they pertain to several topics, including: (1) revision of stratigraphic nomenclature for Kilohigok Basin; (2) vertical and lateral distribution of facies/fabrics of disconformities developed in the lower Bear Creek group; ( 3) stratigraphy and sedimentology of the Beechey Formation; (4) diagenesis studies of the Peg Formation (new name); and (5) constraints on the stratigraphy, sedimentology, and provenance of the Burnside Formation

    Trends in stratospheric minor constituents

    Get PDF
    Photochemical models predict that increasing source gas concentrations are also expected to lead to changes in the concentrations of both catalytically active radical species (such as NO2, ClO, and OH) and inactive reservoir species (such as HNO3, HCl, and H2O). For simplicity, we will refer to all these as trace species. Those species that are expected to have increasing concentration levels are investigated. Additionally, the trace species concentration levels are monitored for unexpected changes on the basis of the measure increase in source gases. Carrying out these investigations is difficult due to the limited data base of measurements of stratospheric trace species. In situ measurements are made only infrequently, and there are few satelliteborne measurements, most over a time space insufficient for trend determination. Instead, ground-based measurements of column content must be used for many species, and interpretation is complicated by contributions from the troposphere or mesosphere or both. In this chapter, we examine existing measurements as published or tabulated

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal

    Real-time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon

    Full text link
    Crystalline to amorphous phase transformation during initial lithiation in (100) silicon-wafers is studied in an electrochemical cell with lithium metal as the counter and reference electrode. It is demonstrated that severe stress jumps across the phase boundary lead to fracture and damage, which is an essential consideration in designing silicon based anodes for lithium ion batteries. During initial lithiation, a moving phase boundary advances into the wafer starting from the surface facing the lithium electrode, transforming crystalline silicon into amorphous LixSi. The resulting biaxial compressive stress in the amorphous layer is measured in situ and it was observed to be ca. 0.5 GPa. HRTEM images reveal that the crystalline-amorphous phase boundary is very sharp, with a thickness of ~ 1 nm. Upon delithiation, the stress rapidly reverses, becomes tensile and the amorphous layer begins to deform plastically at around 0.5 GPa. With continued delithiation, the yield stress increases in magnitude, culminating in sudden fracture of the amorphous layer into micro-fragments and the cracks extend into the underlying crystalline silicon.Comment: 12 pages, 5 figure

    Fast light, slow light, and phase singularities: a connection to generalized weak values

    Full text link
    We demonstrate that Aharonov-Albert-Vaidman (AAV) weak values have a direct relationship with the response function of a system, and have a much wider range of applicability in both the classical and quantum domains than previously thought. Using this idea, we have built an optical system, based on a birefringent photonic crystal, with an infinite number of weak values. In this system, the propagation speed of a polarized light pulse displays both superluminal and slow light behavior with a sharp transition between the two regimes. We show that this system's response possesses two-dimensional, vortex-antivortex phase singularities. Important consequences for optical signal processing are discussed.Comment: 9 pages, 4 figures, accepted in Physical Review Letters (2003

    Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Get PDF
    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule
    • …
    corecore