24 research outputs found

    From RHIC to EIC: Nuclear Structure Functions

    Full text link
    We study the nuclear structure function F2AF_2^A and its logarithmic derivative in the high energy limit (small xx region) using the Color Glass Condensate formalism. In this limit the structure function F2F_2 depends on the quark anti-quark dipole-target scattering cross section NF(xbj,rt,bt)N_F (x_{bj}, r_t, b_t). The same dipole cross section appears in single hadron and hadron-photon production cross sections in the forward rapidity region in deuteron (proton)-nucleus collisions at high energy, i.e. at RHIC and LHC. We use a parameterization of the dipole cross section, which has successfully been used to describe the deuteron-gold data at RHIC, to compute the nuclear structure function F2AF_2^A and its log Q2Q^2 derivative (which is related to gluon distribution function in the double log limit). We provide a quantitative estimate of the nuclear shadowing of F2AF_2^A and the gluon distribution function in the kinematic region relevant to a future Electron-Ion Collider.Comment: 13 pages, 6 figure

    Chromoelectric fields and quarkonium-hadron interactions at high energies

    Full text link
    We develop a simple model to study the heavy quarkonium-hadron cross section in the high energy limit. The hadron is represented by an external electric color field (capacitor) and the heavy quarkonium is represented by a small color dipole. Using high energy approximations we compute the relevant cross sections, which are then compared with results obtained with other methods. Our calculations are presented in a pedagogical way accessible to undergraduate students.Comment: To appear in Physical Review C, 24 pages, 10 eps figure

    Exclusive vector meson production in electron-ion collisions

    Full text link
    We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.Comment: 11 pages, 6 figures, 1 tabl

    Nuclear shadowing in Glauber-Gribov theory with Q2-evolution

    Full text link
    We consider deep inelastic scattering off nuclei in the Regge limit within the Glauber-Gribov model. Using unitarized parton distribution functions for the proton, we find sizeable shadowing effects on the nuclear total and longitudinal structure functions, F2AF_2^A and FLAF_L^A, in the low-x limit. Extending a fan-diagram analysis for the large-mass region of coherent diffraction off nuclei to high Q2, we also find significant shadowing effects in this kinematical regime. Finally, we discuss shortcomings of our approach and possible extensions of the model to other kinematical regimes.Comment: 16 pages, 9 figure

    Spatial regulation of the glycocalyx component podocalyxin is a switch for prometastatic function

    Get PDF
    The glycocalyx component and sialomucin podocalyxin (PODXL) is required for normal tissue development by promoting apical membranes to form between cells, triggering lumen formation. Elevated PODXL expression is also associated with metastasis and poor clinical outcome in multiple tumor types. How PODXL presents this duality in effect remains unknown. We identify an unexpected function of PODXL as a decoy receptor for galectin-3 (GAL3), whereby the PODXL-GAL3 interaction releases GAL3 repression of integrin-based invasion. Differential cortical targeting of PODXL, regulated by ubiquitination, is the molecular mechanism controlling alternate fates. Both PODXL high and low surface levels occur in parallel subpopulations within cancer cells. Orthotopic intraprostatic xenograft of PODXL-manipulated cells or those with different surface levels of PODXL define that this axis controls metastasis in vivo. Clinically, interplay between PODXL-GAL3 stratifies prostate cancer patients with poor outcome. Our studies define the molecular mechanisms and context in which PODXL promotes invasion and metastasis

    Non-linear QCD dynamics in two-photon interactions at high energies

    Get PDF
    Perturbative QCD predicts that the growth of the gluon density at high energies should saturate, forming a Color Glass Condensate (CGC), which is described in mean field approximation by the Balitsky-Kovchegov (BK) equation. In this paper we study the γγ\gamma \gamma interactions at high energies and estimate the main observables which will be probed at future linear colliders using the color dipole picture. We discuss in detail the dipole - dipole cross section and propose a new relation between this quantity and the dipole scattering amplitude. The total γγ\gamma \gamma, γ∗γ∗\gamma^{*} \gamma^{*} cross-sections and the real photon structure function F2γ(x,Q2)F_2^{\gamma}(x,Q^2) are calculated using the recent solution of the BK equation with running coupling constant and the predictions are compared with those obtained using phenomenological models for the dipole-dipole cross section and scattering amplitude. We demonstrate that these models are able to describe the LEP data at high energies, but predict a very different behavior for the observables at higher energies. Therefore we conclude that the study of γγ\gamma \gamma interactions can be useful to constrain the QCD dynamics.Comment: 11 pages, 5 figures. Version to be published in European Physical Journal

    Ortholog of the polymerase theta helicase domain modulates DNA replication in Trypanosoma cruzi

    Get PDF
    DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins
    corecore