4,415 research outputs found

    Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    Get PDF
    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR)

    On the unitarity of higher-dervative and nonlocal theories

    Get PDF
    We consider two simple models of higher-derivative and nonlocal quantu systems.It is shown that, contrary to some claims found in literature, they can be made unitary.Comment: 8 pages, no figure

    Unimodular Loop Quantum Cosmology

    Full text link
    Unimodular gravity is based on a modification of the usual Einstein-Hilbert action that allows one to recover general relativity with a dynamical cosmological constant. It also has the interesting property of providing, as the momentum conjugate to the cosmological constant, an emergent clock variable. In this paper we investigate the cosmological reduction of unimodular gravity, and its quantization within the framework of flat homogeneous and isotropic loop quantum cosmology. It is shown that the unimodular clock can be used to construct the physical state space, and that the fundamental features of the previous models featuring scalar field clocks are reproduced. In particular, the classical singularity is replaced by a quantum bounce, which takes place in the same condition as obtained previously. We also find that requirement of semi-classicality demands the expectation value of the cosmological constant to be small (in Planck units). The relation to spin foam models is also studied, and we show that the use of the unimodular time variable leads to a unique vertex expansion.Comment: 26 pages. Revised version taking into account referee's comment

    The Supersonic Project: SIGOs, A Proposed Progenitor to Globular Clusters, and Their Connections to Gravitational-wave Anisotropies

    Get PDF
    Supersonically induced gas objects (SIGOs), are structures with little to no dark-matter component predicted to exist in regions of the universe with large relative velocities between baryons and dark matter at the time of recombination. They have been suggested to be the progenitors of present-day globular clusters. Using simulations, SIGOs have been studied on small scales (around 2 Mpc) where these relative velocities are coherent. However, it is challenging to study SIGOs using simulations on large scales due to the varying relative velocities at scales larger than a few Mpc. Here, we study SIGO abundances semi-analytically: using perturbation theory, we predict the number density of SIGOs analytically, and compare these results to small-box numerical simulations. We use the agreement between the numerical and analytic calculations to extrapolate the large-scale variation of SIGO abundances over different stream velocities. As a result, we predict similar large-scale variations of objects with high gas densities before reionization that could possibly be observed by JWST. If indeed SIGOs are progenitors of globular clusters, then we expect a similar variation of globular cluster abundances over large scales. Significantly, we find that the expected number density of SIGOs is consistent with observed globular cluster number densities. As a proof-of-concept, and because globular clusters were proposed to be natural formation sites for gravitational wave sources from binary black-hole mergers, we show that SIGOs should imprint an anisotropy on the gravitational wave signal on the sky, consistent with their distribution

    Dynamics of on-orbit construction process

    Get PDF
    The topics covered are presented in viewgraph form and include the following: problem definition and motivation; survey of current technology; focus problems; approach; progress/discussion; and future direction and anticipated results

    Applications of simulation technique on debris-flow hazard zone delineation: a case study in Hualien County, Taiwan

    Get PDF
    Debris flows pose severe hazards to communities in mountainous areas, often resulting in the loss of life and property. Helping debris-flow-prone communities delineate potential hazard zones provides local authorities with useful information for developing emergency plans and disaster management policies. In 2003, the Soil and Water Conservation Bureau of Taiwan proposed an empirical model to delineate hazard zones for all creeks (1420 in total) with potential of debris flows and utilized the model to help establish a hazard prevention system. However, the model does not fully consider hydrologic and physiographical conditions for a given creek in simulation. The objective of this study is to propose new approaches that can improve hazard zone delineation accuracy and simulate hazard zones in response to different rainfall intensity. In this study, a two-dimensional commercial model FLO-2D, physically based and taking into account the momentum and energy conservation of flow, was used to simulate debris-flow inundated areas. <br><br> Sensitivity analysis with the model was conducted to determine the main influence parameters which affect debris flow simulation. Results indicate that the roughness coefficient, yield stress and volumetric sediment concentration dominate the computed results. To improve accuracy of the model, the study examined the performance of the rainfall-runoff model of FLO-2D as compared with that of the HSPF (Hydrological Simulation Program Fortran) model, and then the proper values of the significant parameters were evaluated through the calibration process. Results reveal that the HSPF model has a better performance than the FLO-2D model at peak flow and flow recession period, and the volumetric sediment concentration and yield stress can be estimated by the channel slope. The validation of the model for simulating debris-flow hazard zones has been confirmed by a comparison of field evidence from historical debris-flow disaster data. The model can successfully replicate the influence zone of the debris-flow disaster event with an acceptable error and demonstrate a better result than the empirical model adopted by the Soil and Water Conservation Bureau of Taiwan

    GUT theories from Calabi-Yau 4-folds with SO(10) Singularities

    Full text link
    We consider an SO(10) GUT model from F-theory compactified on an elliptically fibered Calabi-Yau with a D5 singularity. To obtain the matter curves and the Yukawa couplings, we use a global description to resolve the singularity. We identify the vector and spinor matter representations and their Yukawa couplings and we explicitly build the G-fluxes in the global model and check the agreement with the semi-local results. As our bundle is of type SU(2k), some extra conditions need to be applied to match the fluxes.Comment: 27 page
    corecore