761 research outputs found

    Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry

    Full text link
    A resonant enhancement of the neutron standing waves is proposed to use in order to increase the magnetic neutron scattering from a "superconductor/ferromagnet"(S/F) bilayer. The model calculations show that usage of this effect allows to increase the magnetic scattering intensity by factor of hundreds. Aspects related to the growth procedure (order of deposition, roughness of the layers etc) as well as experimental conditions (resolution, polarization of the neutron beam, background etc) are also discussed. Collected experimental data for the S/F heterostructure Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports. 23 pages, 5 figure

    Convergence Acceleration Techniques

    Full text link
    This work describes numerical methods that are useful in many areas: examples include statistical modelling (bioinformatics, computational biology), theoretical physics, and even pure mathematics. The methods are primarily useful for the acceleration of slowly convergent and the summation of divergent series that are ubiquitous in relevant applications. The computing time is reduced in many cases by orders of magnitude.Comment: 6 pages, LaTeX; provides an easy-to-understand introduction to the field of convergence acceleratio

    Topological phases induced by charge fluctuations in Majorana wires

    Full text link
    One of the problems concerning topological phases in solid-state systems which still remains urgent is an issue of many-body effects. In this study we address it within perturbative theory framework by considering topological phase transitions related to charge correlations in the extended Kitaev chain model that belongs to the BDI symmetry class. Obtained corrections to a zero-frequency quasiparticle Green's function allow to separate the mean-field and fluctuation contributions to a total winding number. As a result, the phase transitions caused solely by the latter are unveiled. We thoroughly analyze the mechanism of such transitions in terms of fluctuation-induced nodal points and spectrum renormalization. Additionally, features of other quasiparticle properties such as effective mass and damping are discussed in the context of topological phase transitions.Comment: 20 pages, 15 figure

    A hydrodynamic model for asymmetric explosions of rapidly rotating collapsing supernovae with a toroidal atmosphere

    Full text link
    We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The configuration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of 0.2x10^51 erg at initial explosion energy release of 1.0x10^51 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M_solar) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae.W e compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.Comment: 13 pages, 5 figures, 2 table

    Effect of local Coulomb interaction on Majorana corner modes: weak and strong correlation limits

    Full text link
    Here we present an analysis of the evolution of Majorana corner modes realizing in a higher-order topological superconductor (HOTSC) on a square lattice under the influence of local Coulomb repulsion. The HOTSC spectral properties were considered in two regimes: when the intensities of many-body interactions are either weak or strong. The weak regime was studied using the mean-field approximation with self-consistent solutions carried out both in the uniform case and taking into account of the boundary of the finite square-shaped system. It is shown that in the uniform case the topologically nontrivial phase on the phase diagram is widened by the Coulomb repulsion. The boundary effect, resulting in an inhomogeneous spatial distribution of the correlators, leads to the appearance of the crossover from the symmetric spin-independent solution to the spin-dependent one characterized by a spontaneously broken symmetry. In the former the corner states have energies that are determined by the overlap of the excitation wave functions localized at the different corners. In the latter the corner excitation energy is defined by the Coulomb repulsion intensity with a quadratic law. The crossover is a finite size effect, i.e. the larger the system the lesser the critical value of the Coulomb repulsion. In the strong repulsion regime we derive the effective HOTSC Hamiltonian in the atomic representation and found a rich variety of interactions induced by virtual processes between the lower and upper Hubbard subbands. It is shown that Majorana corner modes still can be realized in the limit of the infinite repulsion. Although the boundaries of the topologically nontrivial phase are strongly renormalized by Hubbard corrections.Comment: 13 pages, 6 figure

    Recovering rearranged cancer chromosomes from karyotype graphs

    Get PDF
    BACKGROUND: Many cancer genomes are extensively rearranged with highly aberrant chromosomal karyotypes. Structural and copy number variations in cancer genomes can be determined via abnormal mapping of sequenced reads to the reference genome. Recently it became possible to reconcile both of these types of large-scale variations into a karyotype graph representation of the rearranged cancer genomes. Such a representation, however, does not directly describe the linear and/or circular structure of the underlying rearranged cancer chromosomes, thus limiting possible analysis of cancer genomes somatic evolutionary process as well as functional genomic changes brought by the large-scale genome rearrangements. RESULTS: Here we address the aforementioned limitation by introducing a novel methodological framework for recovering rearranged cancer chromosomes from karyotype graphs. For a cancer karyotype graph we formulate an Eulerian Decomposition Problem (EDP) of finding a collection of linear and/or circular rearranged cancer chromosomes that are determined by the graph. We derive and prove computational complexities for several variations of the EDP. We then demonstrate that Eulerian decomposition of the cancer karyotype graphs is not always unique and present the Consistent Contig Covering Problem (CCCP) of recovering unambiguous cancer contigs from the cancer karyotype graph, and describe a novel algorithm CCR capable of solving CCCP in polynomial time. We apply CCR on a prostate cancer dataset and demonstrate that it is capable of consistently recovering large cancer contigs even when underlying cancer genomes are highly rearranged. CONCLUSIONS: CCR can recover rearranged cancer contigs from karyotype graphs thereby addressing existing limitation in inferring chromosomal structures of rearranged cancer genomes and advancing our understanding of both patient/cancer-specific as well as the overall genetic instability in cancer

    Relativistic stars in differential rotation: bounds on the dragging rate and on the rotational energy

    Full text link
    For general relativistic equilibrium stellar models (stationary axisymmetric asymptotically flat and convection-free) with differential rotation, it is shown that for a wide class of rotation laws the distribution of angular velocity of the fluid has a sign, say "positive", and then both the dragging rate and the angular momentum density are positive. In addition, the "mean value" (with respect to an intrinsic density) of the dragging rate is shown to be less than the mean value of the fluid angular velocity (in full general, without having to restrict the rotation law, nor the uniformity in sign of the fluid angular velocity); this inequality yields the positivity and an upper bound of the total rotational energy.Comment: 23 pages, no figures, LaTeX. Submitted to J. Math. Phy
    corecore