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Abstract

Background: Many cancer genomes are extensively rearranged with highly aberrant chromosomal karyotypes.
Structural and copy number variations in cancer genomes can be determined via abnormal mapping of sequenced
reads to the reference genome. Recently it became possible to reconcile both of these types of large-scale variations
into a karyotype graph representation of the rearranged cancer genomes. Such a representation, however, does not
directly describe the linear and/or circular structure of the underlying rearranged cancer chromosomes, thus limiting
possible analysis of cancer genomes somatic evolutionary process as well as functional genomic changes brought by
the large-scale genome rearrangements.

Results: Here we address the aforementioned limitation by introducing a novel methodological framework for
recovering rearranged cancer chromosomes from karyotype graphs. For a cancer karyotype graph we formulate an
Eulerian Decomposition Problem (EDP) of finding a collection of linear and/or circular rearranged cancer
chromosomes that are determined by the graph. We derive and prove computational complexities for several
variations of the EDP. We then demonstrate that Eulerian decomposition of the cancer karyotype graphs is not always
unique and present the Consistent Contig Covering Problem (CCCP) of recovering unambiguous cancer contigs from
the cancer karyotype graph, and describe a novel algorithm CCR capable of solving CCCP in polynomial time. We
apply CCR on a prostate cancer dataset and demonstrate that it is capable of consistently recovering large cancer
contigs even when underlying cancer genomes are highly rearranged.

Conclusions: CCR can recover rearranged cancer contigs from karyotype graphs thereby addressing existing
limitation in inferring chromosomal structures of rearranged cancer genomes and advancing our understanding of
both patient/cancer-specific as well as the overall genetic instability in cancer.

Keywords: Computational biology, Cancer genomics, Contigs, Genome rearrangements, Structural variations, Graph
decomposition

Background
Cancer is a deadly disease propagated by accumula-
tion of genetic mutations that range across scales from
single nucleotide polymorphisms to large-scale genome
rearrangements. Advances in whole-genome sequencing
of tumor samples have enabled the detection of somatic
mutations using specialized algorithms to identify different
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classes of mutations from short, long, and linked DNA
sequence reads available by current technologies [1–10].

In this study we focus on large-scale genome rearrange-
ments that accumulate throughout the somatic evolution-
ary process to alter the order, orientation, and quantity
of genomic sequences, and ultimate producing a collec-
tion of highly rearranged chromosomes that constitute
the cancer genome. Large-scale alterations of the chromo-
somal structure in cancer genomes have been previously
identified as risk factors [11], survival prognosis predic-
tors [12, 13], and possible therapeutic targets [14, 15], thus
underscoring the importance of this type of mutation and
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prompting the development of novel methods to decipher
the rearranged structures of cancer genomes.

Previously proposed algorithms enabled the inference
of copy number aberrations (CNA) (e.g., deletion, amplifi-
cation) of genomic segments [10, 16, 17] and novel adja-
cencies (NA) between genomic loci that are distant in the
reference but are adjacent in cancer genomes [5–7, 9], in
sequenced tumor samples. In the more recent study[18]
a novel methodological framework RCK was proposed
for reconstruction of cancer genomes karyotype graphs,
taking into account both the CNA and NA signals, the
non-haploid nature of both the reference and the derived
genomes, and, when applicable, possible sample hetero-
geneity. The karyotype graph provides a much more accu-
rate and complete description of the rearranged cancer
genome than either of CNA or NA profiles on their own,
but it falls short of describing the actual linear/circular
structure of the rearranged chromosomes, and instead
provides an alignment of the rearranged chromosomes
onto the reference.

Here we consider the problem of inferring sequential
structure of rearranged linear/circular chromosomes in
a cancer genome given its karyotype graph represen-
tation. In previous studies either general observations
about necessary and sufficient conditions on the kary-
otype graphs structure for the existence of the underlying
cancer genome [18, 19], or attempts at extracting informa-
tion about specific local rearranged structures (e.g., ampli-
cons, complex rearrangements, etc) [8, 20, 21] were made.
In the present study we formulate a Eulerian Decomposi-
tion Problem (EDP) for a cancer karyotype graph with the
objective of finding a covering collection of linear and/or
circular paths/cycles (i.e., chromosomes). We derive and
prove computational complexities for both general, min,
and max versions of the EDP. We further observe that for
a cancer karyotype graph there are often multiple possi-
ble Eulerian decompositions which presents ambiguities
for chromosomal sequential structures inference. We note
that similar non-uniqueness of traversals that constitute
genome graph decompositions has also been previously
observed in the area of genome assembly [22]. We then
formulate a Consistent (i.e., shared across all possible min-
imal Eulerian decompositions) Contig Covering Problem
(CCCP) and subsequently present a novel algorithm CCR,
for Consistent Contig Recovering, capable of solving the
CCCP in polynomial time.

We then apply CCR method to the karyotype graphs
of 17 primary and metastatic prostate cancer samples.
We find that CCR effectively finds long, unambiguous
paths shared across all possible graph decompositions
thus reliably inferring cancer contigs. We observe that
for these cancer contig inferences, the N50 sizes of the
obtained results reaches chromosomal scale, and the total
number of contigs is within an order of magnitude of

the number of chromosomes in the underlying genomes,
whereas a naive algorithm fragments the reconstruction
into thousands of contigs and appreciably smaller con-
tig N50 sizes. We thus demonstrate that CCR effectively
advances the frontier for the analysis of rearranged cancer
genomes, allowing for a more detailed and comprehen-
sive studies of structurally altered cancer chromosomes.
A proof-of-concept implementation of CCR is available
at https://github.com/izban/contig-covering and will be
later integrated into the RCK software package available at
https://github.com/aganezov/RCK.

Methods
Rearranged cancer genomes and Interval Adjacency
Graphs
A segment s =[ st , sh] is a continuous part of the refer-
ence chromosome with extremities st and sh determin-
ing its beginning and end respectively. We assume that
every segment appears exactly once in the reference, and
segments do not overlap. An adjacency a = {p, q} con-
nects two segments’ extremities p and q determining a
transition between adjacent segments along the (derived)
chromosome. We assume that a derived cancer genome
Q comes from the reference genome R via large scale
rearrangements and can contain both linear and circular
chromosomes. For a set S(R) of segments in the reference
R and a set S(Q) of segments in genome Q we naturally
have S(Q) ⊆ S(R) (i.e., “building blocks” that the derived
genome is comprised of originate from the reference).

An Interval Adjacency Graph (IAG), or karyotype graph,
G(S, A) = (V , E) is a graph built on a set S of segments
and a set A of adjacencies. A set V = {st , sh | s ∈ S}
of vertices represents extremities of segments in a set S.
A set E of edges is comprised of two types of undirected
edges: segment edges ES = {{st , sh} | s ∈ S}, encoding
segments, and adjacency edges EA = {{p, q} | {p, q} ∈
A}, encoding adjacencies between segments extremities
(Fig. 1a).

A linear chromosome corresponds to a seg-
ment/adjacency edge-alternating path in the IAG that
starts with a segment edge and ends with a segment edge
(Fig. 1b). A circular chromosome correspond to a seg-
ment/adjacency edge-alternating cycle in the IAG. The
number of times every segment/adjacency edge is tra-
versed (in either direction) across all chromosomes in the
genome Q corresponds to the segment/adjacency copy
number (i.e., the number of times segment/adjacency is
present in the observed genome).

For an IAG G = (V , E) we define a multiplicity func-
tion μ : E → N≥0 encoding respective segment/adjacency
copy number, and we call respective IAG G = (V , E, μ)

weighted. The weighted IAG G is positive if μ(e) ≥ 1 for
all e ∈ E. Further, since we can trivially derive a posi-
tive IAG G by removing all edges with multiplicity 0, we
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Fig. 1 Rearranged genomes and Interval Adjacency Graphs. a Reference and derived genomes R and Q both depicted as sequences of oriented
segments and a weighted Interval Adjacency Graph determined by a derived genome Q. In the IAG segment edges are shown as solid, with colors
corresponding to distinct chromosomes, and adjacency edges are shown as dashed, with reference adjacencies shown in black, and novel
adjacencies depicted in red. Edges with copy number 0 are shown as faded, copy numbers of 1 are omitted for clarity. b Rearranged linear
chromosomes in the mutated genome Q depicted as both sequences of oriented segments and as segment/adjacency edge-alternating paths in
the IAG’s connected components

assume that IAG G is positive unless explicitly specified
otherwise.

For a vertex v ∈ V we define eS(v) ∈ ES as a segment
edge incident to v and EA(v) ⊆ EA as adjacency edges
incident to v. We also define for all e ∈ EA an auxiliary
function l(e) that outputs 2 if an adjacency edge e is a loop,
and 1 otherwise.

We define copy number excess x(v) on a vertex v ∈ V as
follows:

x(v) = μ(eS(v)) −
∑

e∈EA(v)
l(e) · μ(e). (1)

Given that both segment and adjacency edges can have
positive multiplicities, for any set E′ of edges we define
μ(E′) = ∑

e∈E′ μ(e).

Interval Adjacency Graph decompositions
For an IAG G = (V , E, μ) we define Eulerian decomposi-
tion (ED) as collection D = P ∪ C of segment/adjacency
edge-alternating paths P and cycles C (i.e., linear and cir-
cular chromosomes in cancer genome) such that every
segment/adjacency edge e is present in D exactly μ(e)
times. Below we outline the known necessary and suffi-
cient condition for an Eulerian decomposition to exist in
an IAG:

Lemma 1 IAG G = (V , E, μ) has an Eulerian decomposi-
tion if and only if for all v ∈ V holds x(v) ≥ 0. [18, 19, 23]

We call IAG G decomposable if there exist an Eulerian
decomposition D of G and assume that the considered
IAG is decomposable unless explicitly stated otherwise.

We define by C+(G) a set of connected components
in G such that for every c ∈ C+(G) there exist a vertex

v ∈ c : x(v) > 0. We define by C0(G) a set of connected
components in G such that for every c ∈ C0(G) for every
vertex v ∈ c : x(v) = 0.

As the number of chromosomes can play a crucial role
in cancer development and progression we now observe
the previously proven result on how the karyotype graph
determines the quantity of chromosomes in the depicted
cancer genome:

Lemma 2 For an IAG G = (V , E, μ) the number |P| of
paths P in any Eulerian decomposition D of G is deter-
mined as follows [18]:

|P| = 1
2

∑

v∈V
x(v). (2)

Below we observe the problem of finding the Eulerian
decomposition of an IAG which in turn determines the
collection of linear/circular rearranged cancer chromo-
somes:

Problem 1 (IAG Eulerian Decomposition Problem,
EDP) Given an IAG G find some Eulerian decomposition
D of G.

Theorem 1 EDP can be solved in O (μ(E)) time.

Proof We solve the problem for each connected compo-
nent c ∈ G separately.

At first, we show how to find an ED of the component c
from C0(G). In this case, x(v) = 0 for all v ∈ c, so the num-
bers of adjacent segment and adjacency edges (with their
multiplicities) are equal in each vertex. Thus, in each ver-
tex we can match each segment edge with some adjacency
edge. Since each edge has two matched edges of opposite
type, one in each endpoint, these matches represent a set
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of alternating cycles, which is exactly the desired Eulerian
decomposition.

Now, consider a component c from C+(G). We modify
graph G so that c becomes the component c′ ∈ C0(G′):
for each vertex v with x(v) > 0 we add supplemental
adjacency loops l = {v, v} with μ(l) = � x(v)

2 	; and for
the vertices v1, v2, . . . , v2k which are left with x(v) = 1
we add supplemental adjacency edges ei = {v2i−1, v2i}
with μ(ei) = 1. Indeed, there are an even number of ver-
tices with excess 1 since the total copy number excess∑

v∈V x(v) is even, and thus there may exist only an even
number of vertices with an odd copy number excess. In
this new graph G′ we have x(v) = 0 for any v and, thus,
we can build ED D′ using the algorithm from the previous
paragraph. To get ED of G we just remove all supple-
mental edges from D′. We removed only adjacency edges,
thus each cycle either remains the same or is split into
several edge-alternating paths, which start and end with
a segment edge. This satisfies the definition of Eulerian
decomposition.

With the proposed efficient algorithm for obtaining and
Eulerian decomposition of an IAG and the respective col-
lection of linear/circular cancer chromosomes, we now
observe how many of said chromosomes can be present in
the obtained decomposition (Fig. 2).

Rare circular chromosomes, or double minutes, have
been previously observed in some cancers [24–26] and we
first consider a case where the number of circular chromo-
somes in cancer genome is minimal. Below we show the
previously known result that for IAG G every connected
component c ∈ C+(G) can be decomposed into paths-
only, and every connected components c ∈ C0(G) can be
covered by a single cycle:

Lemma 3 For a decomposable IAG G = (V , E, μ) the
size |D| = |P|+ |C| of any of its minimal (cardinality-wise)
Eulerian decompositions is equal to [18]:

|D| = |P| + |C| = 1
2

∑

v∈V
x(v) + |C0(G)|. (3)

We now described the problem of finding a minimal
Eulerian decomposition of an IAG:

Problem 2 (IAG Minimal Eulerian Decomposition
Problem, min-EDP) Given an IAG G find a minimal
Eulerian decomposition D of G (i.e., for any Eulerian
decomposition D′ of G, |D| ≤ |D′|).

Theorem 2 min-EDP can be solved in
(
μ(E)2) time.

Proof At first, using the algorithm from Theorem 1 we
obtain some ED D of graph G. Then, we iteratively merge
cycles with paths or cycles with cycles via shared segment
edges, until we are left with one cycle in c from C0(G),
and until there are no cycles in c from C+(G). To analyze
the overall complexity of the aforementioned workflow for
solving the min-EDP we first observe that, according to
Theorem 1 we can find some ED of G in O(μ(E)) time.
We then iteratively identify pairs C, Q of a cycle C and a
path/cycle Q that share some segment edge s and merge
them into a new path/cycle Q′. At each step a pair C, Q can
be identified and merged in O(μ(E)), and there can be at
most O(μ(E)) such steps, thus bringing the total runtime
complexity of the proposed workflow to O(μ(E)2).

While the min-EDP describes the most parsimonious
and biologically relevant scenario, we also observe the
opposite case and pose a problem of finding the cancer
genome described by a given IAG with the maximum
number of circular chromosomes and subsequently prove
that it is computationally harder than the min-EDP:

Problem 3 (IAG Maximal Eulerian Decomposition
Problem, max-EDP) Given an IAG G find a maximal
Eulerian decomposition D of G (i.e., for any Eulerian
decomposition D′ of G, |D| ≥ |D′|).

Fig. 2 Eulerian Decompositions of Interval Adjacency Graphs. Distinct Eulerian decompositions of different cardinalities of IAG connected
components where vertices have a non-zero copy number excess (left) and with all vertices being copy number balanced (right)
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Fig. 3 Reduction of K3 covering problem to the instance of max-EDP.
Transformation of the regular undirected graph G into IAG G′ and
back with K3 decomposition in G corresponding to
segment-adjacency edge-alternating cycles in G′

Theorem 3 max-EDP is NP-hard.

Proof The problem of checking if a simple undirected
graph G = (V , E) has a K3 edge partition (i.e., a set E
of edges can be partitioned into non-intersecting subsets
E1, E2, . . . , En such that each Ei generates a subgraph Gi of

G, where Gi is isomorphic to a complete graph K3) is NP-
complete [27]. Let us show that max-EDP is NP-hard by
reducing the problem of K3 edge partition to max-EDP.

Suppose that in the K3 edge partition problem we are
given an graph G = (V , E), with deg(v) as a degree of a
vertex v ∈ V . We note that ∀v ∈ V we have deg(v) ≡ 0
(mod 2) as otherwise K3 edge partitioning of G does not
exist. Now we build a new graph G′ = (V ′, E′) from G for
the max-EDP instance as follows:

(i) add two vertices vh, vt ∈ V ′ for each v ∈ V ;
(ii) add an adjacency edge e = {vh, uh} with μ(e) = 1 for

each edge {u, v} ∈ E;
(iii) add segment edges s = {vh, vt} with μ(s) = deg(v);
(iv) add adjacency loops l = {vt , vt} with μ(l) = deg(v)/2

The example of such transformation is shown in Fig. 3.
There exists a bijection between cycles in G and seg-

ment/adjacency edge-alternating cycles in G′. Since the
smallest possible cycle in G′ corresponds to K3 in G, the
solution in max-EDP corresponds to finding exactly the
partition of G into K3, if it exists. Because the described
reduction can be computed in linear time, the max-EDP is
NP-hard, as is the K3 edge partition problem.

Consistent contig covering problem
We can assume that minimal Eulerian decomposition(s)
are the most likely ones, as they describe the simplest
possible (composition-wise) representation of a cancer
genome. When no additional information is available and
there exist several minimal Eulerian decompositions of
an observed IAG it is unclear how to select the true
one (Fig. 4a). To address this challenge we consider the
inference of sub-paths/cycles that are present across all
possible minimal Eulerian decompositions of a considered
IAG.

Fig. 4 Eulerian decompositions and contigs covering inference for Interval Adjacency Graphs. a Two distinct contig coverings corresponding to
minimal Eulerian decompositions of the same IAG. b Transformation of IAG G with vertices with copy number excess (i.e., telomere vertices) into a
an IAG G′ with no telomere vertices. Added supplemental segment and adjacency edges are shown in grey
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For IAG G = (V , E, μ) a collection T = P ∪ C of seg-
ment/adjacency edge-alternating paths/cycles is called a
contig covering of G if

(i) every segment edge e ∈ ES is present exactly μ(e)
times across all elements of T (i.e., μ(e) = μT (e)),

(ii) for every adjacency edge e ∈ EA we have
μ(e) ≥ μT (e),

where μT is the copy number function on edges deter-
mined by T.

A contig covering of a given decomposable IAG repre-
sents (sub)parts of the full linear/circular chromosomes in
Eulerian decomposition(s) and we note that an Eulerian
decomposition is a special case of a contig covering.

As simple collection of individual segments with their
multiplicities being taken into account represents a con-
tig covering which we call primitive. Below we consider
a problem of finding contig coverings that contain longer
paths/cycles and thus represent more contiguous parts of
rearranged cancer chromosomes. For IAG G = (V , E, μ)

and its contig covering T we define contiguity discordance
‖G − T‖ as follows:

‖G−T‖=
∑

e∈E
(μ(e) − μT (e)) =

∑

e∈EA

(μ(e) − μT (e)) . (4)

We note, that for IAG G = (V , E, μ) and any Eulerian
decomposition D of G we naturally have ‖G−D‖ = 0 (i.e.,
all adjacencies, including multiplicities, are present in D)
and for a primitive decomposition T̃ we have ‖G − T̃‖ =
μ(EA).

Since one IAG can have multiple minimal Eulerian
decompositions we now formulate a problem of finding
the “longest” consistent contigs shared across all mini-
mal Eulerian decompositions (i.e., longest uniquely deter-
mined contigs across all possible linear/circular/mixed
genomes that the given IAG determines) as follows:

Problem 4 (IAG Consistent Contig Covering Problem,
CCCP) Given IAG G = (V , E, μ) find a contig covering
T = P ∪ C of G such that for every minimal Eulerian
decomposition D of G every path p ∈ P and cycle c ∈ C
is present in D, and the contiguity discordance ‖G − T‖ is
minimized.

Theorem 4 CCCP can be solved in O(μ(E)2) time.

Proof At first, we assume that the graph is connected.
Otherwise, we consider its connected components sep-
arately. Below we present the CCR algorithm capable of
solving CCCP in O(μ(E)2). An overview of the CCRwork-
flow is shown in Fig. 5.

We start constructing the solution T by setting it to the
primitive contig covering T = T̃ and then iteratively add
adjacency edges to it as described below:

1. Transform the initial graph G = (V , E, μ) into a
graph G′ which minimal Eulerian decomposition is a
single cycle, i.e., x(v) = 0 for all vertices v ∈ V . For
that we add the following elements into G: a
supplemental segment edge i = {it , ih}, a
supplemental adjacency edge {v, it} for every
v ∈ V : x(v) > 0, and an adjacency edge-loop {ih, ih}
(Fig. 4b). For every added supplemental adjacency
edge e = {v, it} we set the multiplicity μ(e) = x(v),
for supplemental segment edge i we set multiplicity
μ(i) = ∑

v x(v), and for supplemental self-loop
adjacency edge {ih, ih} we set its multiplicity μ(i)

2 .
2. Find some minimal Eulerian Decomposition D′ of G′

using the algorithm from Theorem 2;
3. Since every (sub)path/cycle present in desired T must

also be present in the obtained D′ (when considering
only non-supplemental edges) we consider pairs
b = (e, f ) of non-supplemental consecutive adjacency
edges in any path/cycle in D′. In the beginning every
such pair b is marked as unprocessed. For every
unprocessed pair b = (e, f ) we check if there exist
another minimal Eulerian decomposition of G′
where e and f are not consecutive. For space
considerations we describe in detail how this check is
performed in the Additional file 1: Methods.
If this pair b is not consecutive in some other
minimal Eulerian decomposition of G′ we mark b as
processed and never return to it again. Otherwise, it
belongs to all minimal Eulerian decompositions of
G′. Suppose that e = {xh, yt}, f = {yh, zt} and the
segment edge y = {yt , yh} between e and f in D′. We
remove e, y, and f from G′ and insert a new
non-supplemental contracted adjacency edge
j = {xt , zh} between endpoints xt and zh. We update
D′ in the same manner: we replace e, y and f with j.
We further update T by adding non-contracted
adjacency edges from {e, f } by choosing copies of
segments x, y, and z that do not have adjacency edges
incident to them (at vertices xh, yt , yh, and zt), and
connecting them via e and f. We update T with only
non-contracted adjacency edges because all
adjacency information from contracted adjacency
edges has already been added to T.
If there are still unprocessed pairs of adjacency edges
in G′ we reiterate Step 3.

4. We end up with the terminal graph G′ in which no
pair of adjacency edges belong to the same path/cycle
in any consistent contig covering. Now we want to
select the largest (cardinality-wise) collection L of
non-contracted adjacency edges from G′ such that
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Fig. 5 CCR workflow on IAG presented in Fig. 4b. a Iterative Step 3 in CCR workflow: processing of pairs of consecutive adjacency edges in the
min-ED, contraction of pairs that are present in all min-EDs, updates of the solution. Supplemental (both segment and adjacency) edges are shown
in grey, contracted adjacency edges are shown as dotted orange. b Processing of the terminal graph obtained after iterative Step 3 execution with
removal of contracted adjacency edges, incident to them segment edges, and dangling edges after that. Search for a collection L of adjacency
edges in which no pair {e, f } share the same copy of a segment

when updating T with edges from L the collection T
remains consistent contig covering. We find such
collection L by solving the maximum-matching
problem in the auxiliary graph, see Additional file 1:
Methods and Additional file 1: Figure S1 for details.
After updating T with adjacency edges from L the
collection T represents a solution to the CCCP

instance. We note that the solution found to CCCP
may not be unique.

Now we analyze complexity of the proposed CCR algo-
rithm. In Step 2 min-ED can be found in O(μ(E)2) as per
Theorem 2. There can be at most O(μ(E)) iterations of
Step 3 of the algorithm: in each iteration we either mark
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some pair of edges as processed, or decrease the number
of adjacency edges and increase the number of unpro-
cessed pairs by 2. The check adjacency edge pair in Step
3 is performed in O(μ(E)). Complexity of the selection of
non-contracted adjacency edges in the terminal graph is
dominated by the Maximum-Matching search, which can
be performed in O(μ(E)2). Thus, the total complexity of
CCR algorithm is O(μ(E)2).

Results
Evaluation and applications
To evaluate the performance of CCR we applied it on
cancer karyotype graphs originally produced with RCK
on 17 prostate cancer samples [18]. We note that the
karyotypes inferred in the previous study are both clone-
and haplotype-specific, but for the purposes of this study
we do not consider intra-sample relations between dis-
tinct clones that comprise it. We also underscore that
the CCR algorithm and it’s theoretical framework does
not discriminate between haplotype-specific and haploid
karyotype graphs, as both are Interval Adjacency Graphs
at their core.

Out of the 17 considered cancer samples, 10 were het-
erogeneous with a 2-clone compositions, and 7 were
homogeneous with a single cancer clone present in
each one of them. In the original study the clone- and
haplotype-specific graphs were inferred with RCK which
was ran with sample-specific novel adjacencies obtained
from the earlier study [17] and with both Battenberg
[17] and HATCHet [16] copy number aberrations (CNA)
profile inputs, producing a separate graph for each CNA
input. Both Battenberg and HATCHet analyze read-
depth ratios and B-allele frequencies of bulk-sequenced
short reads that are aligned and grouped across large
genomic fragments. Both methods take into account pos-
sible sample heterogeneity with HATCHet being capable
of analyzing jointly multiple samples coming from the
same patient. Both methods produce clone- and allele-
specific CNA profiles, that RCK takes as part of the input
along with novel adjacencies and infers the karyotype
graph for underlying rearranged cancer genomes. Thus we
run CCR on 54 karyotype graphs originally inferred for 27
cancer clones in 17 samples.

Information about the lengths (i.e., sum of lengths of
segments with their multiplicities taken into account)
of the cancer genomes represented as karyotype graphs,
the number of chromosomes in their minimal Eule-
rian decompositions, and whether or not the considered
genomes had a Whole Genome Duplication event in the
somatic evolutionary history (as according to the original
study [16]) is provided in Additional file 1: Table S1.

We observe that CCR was capable of recovering long
contigs in the obtained consistent contig covering on all
observed cancer karyotype graphs, with the total number

of unambiguous contigs being within an order of magni-
tude from the overall number of chromosomes (Fig. 6a,b).
We also computed the N50 size for the obtained con-
tigs, and observe that on average CCR obtains contigs
with N50 sizes of 50Mbp or greater, which indicates that
the CCR is capable of recovering chromosomal scale con-
tigs (Fig. 6c,d). We note that the contig inference results
obtained from karyotype graphs produced with either
Battenberg or HATCHetCNA input for RCKwere very
similar, with the inference on RCK+HATCHet graphs pro-
ducing fewer and slightly longer contigs on most samples.

We also investigated on whether and if so to what
extent the proposed comprehensive CCR contig inference
algorithm is more efficient than the “naive” approach of
recovering contigs, when a contig covering is produced by
only including pairs (a, b) of consecutive adjacency edges
involving a segment edge s when their are no other adja-
cency edges involving s. We note that the naive approach,
while trivial to derive, has not been previously imple-
mented or utilized and serves as a baseline for assessing
the performance of the proposed CCR method. We found
that CCR substantially outperforms the naive approach
in both reducing the number of contigs in the produced
contig coverings (Fig. 6a,b) and in the contiguity of the
recovered contigs (Fig. 6c,d).

Discussion
Inferring rearranged cancer genomes remains a challeng-
ing task, but recent advances in inferring clone- and
haplotype-specific cancer karyotype graphs genomes have
improved our ability to depict and analyze genetic insta-
bility in cancer. Our formal graph-based framework and
CCR algorithm for inferring the sequential structure of
cancer genome’s chromosomes from its karyotype graph
represents the next logical step in bringing us closer to
recovering complete rearranged cancer chromosomes for
further analysis.

While our CCR algorithm has demonstrated excellent
performance on real cancer karyotype graphs with the
average N50 of recovered unambiguous contigs exceed-
ing 50Mbp, there are still several avenues for improving
and extending the proposed approach. The joint consid-
eration of information from karyotype graphs of several
cancer clones that either comprise the same sample or
in general belong to the same patient may improve the
quality of the obtained contigs, as distinct clones from
the same patient have parts of the somatic evolution-
ary history in common, and thus may share some of the
rearranged chromosomal structure. Furthermore, CCR
would benefit from incorporating, when available, the
long-range molecule-of-origin information coming from
3rd-generation long/linked reads, that can help resolve
some of the ambiguities encountered during the contig
inference process. We also note that, while running-time
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Fig. 6 Contigs obtained with both CCR (red) and the baseline “naive” contig inference approach (blue) and on haplotype-specific cancer karyotype
graphs. a Number of contigs recovered with CCR and the “naive” approach from input karyotype graphs obtained with RCK on HATCHet CNA
input. b Number of contigs recovered with CCR and the “naive” approach from input karyotype graphs obtained with RCK on Battenberg CNA
input. c N50 metric for contigs recovered with CCR and “naive” approach from input karyotype graphs obtained with RCK on HATCHet CNA input.
d N50 metric for contigs recovered with CCR and “naive” approach from input karyotype graphs obtained with RCK on Battenberg CNA input

complexity for the minimal Eulerian Decomposition infer-
ence step in the CCR algorithm is not dominant, a more
efficient algorithm for minimal Eulerian Decomposition
may exist which would improve upon the complexity
described in Theorem 2.

Overall we believe thatCCR addresses many of the major
limitations in cancer chromosomal structural analysis and
can help advance our understanding of both patient/type-
specific as well as the overall genetic instability in cancer.

Conclusions
In the presented work, we analyzed the problem of find-
ing the sequential chromosomal structure of rearranged
cancer genomes from their karyotype graph representa-
tion. We formulated several variations of the Eulerian
decomposition problem (EDP) for a given cancer kary-
otype graph and provided a polynomial-time solution for
the most biological relevant min-EDP version of it, and
proved that the max-EDP version is NP-hard.
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We observed that the Eulerian decompositions of a
given cancer karyotype graph, while representing the
sequential structure of the rearranged chromosomes, may
not be unique. To combat resulting ambiguities we for-
mulated a consistent contig covering problem (CCCP) of
inferring a collection of the longest unambiguous (i.e.,
present in every decomposition) cancer contigs, and pre-
sented a novel algorithm CCR capable of solving it in
polynomial time.

We then evaluated the performance of CCR on 54 can-
cer karyotype graphs obtained with RCK on diverse group
of 17 prostate cancer samples. Our results consistently
showed that CCR is capable of decomposing the input
karyotype graphs into relatively small collections of long,
unambiguous contigs with N50 exceeding 50Mbp in most
cases and the total number of contigs within an order of
magnitude from the overall number of chromosomes in
the considered cancer genomes.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3208-4.

Additional file 1: Recovering rearranged cancer chromosomes from
karyotype graphs.
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