3,791 research outputs found

    Non-circular rotating beams and CMB experiments

    Get PDF
    This paper is concerned with small angular scale experiments for the observation of cosmic microwave background anisotropies. In the absence of beam, the effects of partial coverage and pixelisation are disentangled and analyzed (using simulations). Then, appropriate maps involving the CMB signal plus the synchrotron and dust emissions from the Milky Way are simulated, and an asymmetric beam --which turns following different strategies-- is used to smooth the simulated maps. An associated circular beam is defined to estimate the deviations in the angular power spectrum produced by beam asymmetry without rotation and, afterwards, the deviations due to beam rotation are calculated. For a certain large coverage, the deviations due to pure asymmetry and asymmetry plus rotation appear to be very systematic (very similar in each simulation). Possible applications of the main results of this paper to data analysis in large coverage experiments --as PLANCK-- are outlined.Comment: 13 pages, 9 figures, to appear in A&

    Mechanics reveals the biological trigger in wrinkly fingers

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10439-016-1764-6Fingertips wrinkle due to long exposure to water. The biological reason for this morphological change is unclear and still not fully understood. There are two main hypotheses for the underlying mechanism of fingertip wrinkling: the ‘shrink’ model (in which the wrinkling is driven by the contraction of the lower layers of skin, associated with the shrinking of the underlying vasculature), and the ‘swell’ model (in which the wrinkling is driven by the swelling of the upper layers of the skin, associated with osmosis). In reality, contraction of the lower layers of the skin and swelling of the upper layers will happen simultaneously. However, the relative importance of these two mechanisms to drive fingertip wrinkling also remains unclear. Simulating the swelling in the upper layers of skin alone, which is associated with neurological disorders, we found that wrinkles appeared above an increase of volume of ˜10%.˜10%. Therefore, the upper layers can not exceed this swelling level in order to not contradict in vivo observations in patients with such neurological disorders. Simulating the contraction of the lower layers of the skin alone, we found that the volume have to decrease a ˜20%˜20% to observe wrinkles. Furthermore, we found that the combined effect of both mechanisms leads to pronounced wrinkles even at low levels of swelling and contraction when individually they do not. This latter results indicates that the collaborative effect of both hypothesis are needed to induce wrinkles in the fingertips. Our results demonstrate how models from continuum mechanics can be successfully applied to testing hypotheses for the mechanisms that underly fingertip wrinkling, and how these effects can be quantified.Peer ReviewedPostprint (published version

    Cosmological solutions in F(R) Horava-Lifshitz gravity

    Full text link
    At the present work, it is studied the extension of F (R) gravities to the new recently proposed theory of gravity, the so-called Horava-Lifshitz gravity, which provides a way to make the theory power counting renormalizable by breaking Lorentz invariance. It is showed that dark energy can be well explained in the frame of this extension, just in terms of gravity. It is also explored the possibility to unify inflation and late-time acceleration under the same mechanism, providing a natural explanation the accelerated expansion.Comment: 4 pages. Contribution to the Proceedings of the Spanish Relativity Meeting (ERE) 2010, Granada, Spai

    A theoretical model of the endothelial cell morphology due to different waveforms

    Get PDF
    Endothelial cells are key units in the regulatory biological process of blood vessels. They represent an interface to transmit variations on the fluid dynamic changes. They are able to adapt its cytoskeleton, by means of microtubules reorientation and F-actin reorganization, due to new mechanical environments. Moreover, they are responsible for initiating a huge cascade of biological processes, such as the release of endothelins (ET-1), in charge of the constriction of the vessel and growth factors such as TGF-ß and PDGF. Although a huge efforts have been made in the experimental characterization and description of these two issues the computational modeling has not gained such an attention. In this work we study the 3D remodeling of endothelial cells based on the main features of blood flow. In particular we study how different oscillatory shear index and the time average wall shear stresses modify the endothelial cell shape. We found our model fitted the experimental works presented before in in vitro studies. We also include our model within a computational fluid dynamics simulation of a carotid artery to evaluate endothelial cell shape index which is a key predictor of atheroma plaque formation. Moreover, our approach can be coupled with models of collagen and smooth muscle cell growth, where remodeling and the associated release of chemical substance are involved.Peer ReviewedPostprint (author's final draft

    Symplectic matrices with predetermined left eigenvalues

    Full text link
    We prove that given four arbitrary quaternion numbers of norm 1 there always exists a 2×22\times 2 symplectic matrix for which those numbers are left eigenvalues. The proof is constructive. An application to the LS category of Lie groups is given.Comment: 7 page
    • …
    corecore