553 research outputs found

    The sensitivity and specificity of a diagnostic test of sequence-space synesthesia

    Get PDF
    People with sequence-space synaesthesia (SSS) report stable visuo-spatial forms corresponding to numbers, days and months (amongst others). This type of synaesthesia has intrigued scientists for over 130 years but the lack of an agreed upon tool for assessing it has held back research on this phenomenon. The present study builds on previous tests by measuring the consistency of spatial locations that is known to discriminate controls from synaesthetes. We document, for the first time, the sensitivity and specificity of such a test and suggest a diagnostic cut-off point for discriminating between the groups based on the area bounded by different placement attempts with the same item

    Resource use and outcome in critically ill patients with hematological malignancy: a retrospective cohort study

    Get PDF
    INTRODUCTION: The paucity of data on resource use in critically ill patients with hematological malignancy and on these patients' perceived poor outcome can lead to uncertainty over the extent to which intensive care treatment is appropriate. The aim of the present study was to assess the amount of intensive care resources needed for, and the effect of treatment of, hemato-oncological patients in the intensive care unit (ICU) in comparison with a nononcological patient population with a similar degree of organ dysfunction. METHODS: A retrospective cohort study of 101 ICU admissions of 84 consecutive hemato-oncological patients and 3,808 ICU admissions of 3,478 nononcological patients over a period of 4 years was performed. RESULTS: As assessed by Therapeutic Intervention Scoring System points, resource use was higher in hemato-oncological patients than in nononcological patients (median (interquartile range), 214 (102 to 642) versus 95 (54 to 224), P < 0.0001). Severity of disease at ICU admission was a less important predictor of ICU resource use than necessity for specific treatment modalities. Hemato-oncological patients and nononcological patients with similar admission Simplified Acute Physiology Score scores had the same ICU mortality. In hemato-oncological patients, improvement of organ function within the first 48 hours of the ICU stay was the best predictor of 28-day survival. CONCLUSION: The presence of a hemato-oncological disease per se is associated with higher ICU resource use, but not with increased mortality. If withdrawal of treatment is considered, this decision should not be based on admission parameters but rather on the evolutional changes in organ dysfunctions

    Taylor dispersion of nanoparticles

    Get PDF
    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced “industrial” particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori

    P-73AN INVESTIGATION OF ADDICTIONS (SUBSTANCES AND BEHAVIORS) IN A COMMUNITY SAMPLE

    Get PDF
    Chemical and behavioral addictions are highly prevalent in our societies. Nevertheless, studies investigating a large panel of addictive behaviors in a community sample are lacking from the current literature on the topic. The aim of the current study is to explore addictive behaviors prevalence, characteristics, and interrelations in a sample of French speaking adults from the general population. Both substances (alcohol, tobacco, cannabis, drugs) and behaviors (gambling, Internet, buying, sport, work, mobile phone, eating) were considered. Several features of these addictive behaviors (involved in the triggering of the behaviors) were considered, namely, frequency, loss of control, hedonic aspects, craving, impact upon the daily living, and emotional contexts. 770 subjects answered to the online survey. Descriptive results will be presented for each conducts and their related features (prevalence, comorbidities, specific characteristics associated with each addictive behaviors). Our study thus provides a detailed overview of the current conducts' prevalence along with their co-occurrences. It also sheds some lights on how these behaviors may have an impact upon the daily living, and eventually turn into problematic behaviors. A particular emphasis is set on some behavioral conducts, like Internet gaming which is particularly salien

    Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field

    Get PDF
    Magnetic thermo-responsive hydrogels are a new class of materials that have recently attracted interest in biomedicine due to their ability to change phase upon magnetic stimulation. They have been used for drug release, magnetic hyperthermia treatment, and can potentially be engineered as stimuli-responsive substrates for cell mechanobiology. In this regard, we propose a series of magnetic thermo-responsive nanocomposite substrates that undergo cyclical swelling and de-swelling phases when actuated by an alternating magnetic field in aqueous environment. The synthetized substrates are obtained with a facile and reproducible method from poly-N- isopropylacrylamide and superparamagnetic iron oxide nanoparticles. Their conformation and the temperature-related, magnetic, and biological behaviors were characterized via scanning electron microscopy, swelling ratio analysis, vibrating sample magnetometry, alternating magnetic field stimulation and indirect viability assays. The nanocomposites showed no cytotoxicity with fibroblast cells, and exhibited swelling/de-swelling behavior near physiological temperatures (around 34 °C). Therefore these magnetic thermo-responsive hydrogels are promising materials as stimuli-responsive substrates allowing the study of cell-behavior by changing the hydrogel properties in situ

    Integrating silver compounds and nanoparticles into ceria nanocontainers for antimicrobial applications

    Get PDF
    Silver compounds and nanoparticles (NPs) are gaining increasing interest in medical applications, specifically in the treatment and prevention of biomaterial-related infections. However, the silver release from these materials, resulting in a limited antimicrobial activity, is often difficult to control. In this paper, ceria nanocontainers were synthesized by a template-assisted method and were then used to encapsulate silver nitrate (AgNO₃/CeO₂ nanocontainers). Over the first 30 days, a significant level of silver was released, as determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). A novel type of ceria container containing silver NPs (AgNP/CeO₂ containers) was also developed using two different template removal methods. The presence of AgNPs was confirmed both on the surface and in the interior of the ceria containers by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Upon removal of the template by calcination, the silver was released over a period exceeding three months (>90 days). However, when the template was removed by dissolution, the silver release was shortened to ≤14 days. The antimicrobial activity of the silver-containing CeO₂ containers was observed and the minimum bactericidal concentration (MBC) was determined using the broth dilution method. Investigation on human cells, using a model epithelial barrier cell type (A549 cells), highlighted that all three samples induced a heightened cytotoxicity leading to cell death when exposed to all containers in their raw form. This was attributed to the surface roughness of the CeO₂ nanocontainers and the kinetics of the silver release from the AgNO₃/CeO₂ and AgNP/CeO₂ nanocontainers. In conclusion, despite the need for further emphasis on their biocompatibility, the concept of the AgNP/CeO₂ nanocontainers offers a potentially alternative long-term antibactericidal strategy for implant materials

    Surfactant Protein D modulates allergen particle uptake and inflammatory response in a human epithelial airway model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated.</p> <p>Methods</p> <p>SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4<sup>+ </sup>T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array.</p> <p>Results</p> <p>SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines.</p> <p>Conclusion</p> <p>These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.</p
    corecore