3 research outputs found

    Complete electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators

    Get PDF
    Electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators such as naphthalene, biphenyl, phenanthrene, anthracene, and pyrene, was studied. The amount of mediator required was able to be reduced to 0.01 equiv. for all mediators except for anthracene, with the complete dechlorination of mono-, 1,3-di- and 1,2,4-trichlorobenzene still achieved. This catalytic amount of mediator plays an important role in accelerating the dechlorination through the rapid formation of radical anions prior to reduction of the chlorobenzenes

    Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud

    Get PDF
    In this study, calcined Lapindo volcanic mud (LVM) was used as an adsorbent to remove an anionic dye, methyl orange (MO), from an aqueous solution by the batch adsorption technique. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The adsorption kinetics and equilibrium isotherms of the LVM were studied using pseudo-first-order and -second-order kinetic equations, as well as the Freundlich and Langmuir models. The experimental data obtained with LVM fits best to the Langmuir isotherm model and exhibited a maximum adsorption capacity (qmax) of 333.3 mg g-1; the data followed the second-order equation. The intraparticle diffusion studies revealed that the adsorption rates were not controlled only by the diffusion step. The thermodynamic parameters, such as the changes in enthalpy, entropy, and Gibbs free energy, showed that the adsorption is endothermic, random and spontaneous at high temperature. The results indicate that LVM adsorbs MO efficiently and could be utilized as a low-cost alternative adsorbent for the removal of anionic dyes in wastewater treatment

    Optimal Ni loading towards efficient CH4 production from H2 and CO2 over Ni supported onto fibrous SBA-15

    Get PDF
    The transformation of SBA-15 into fibrous type SBA-15 (F-SBA-15) as well as the influence of Ni loadings (1, 3, 5, and 10 wt%) towards an efficient CH4 production from H-2 and CO2 were explored. The synthesized catalysts were characterized using XRD, BET, ICP-MS, FTIR, FESEM-EDX, TEM, and in-situ FTIR adsorbed pyrrole. Increasing Ni loadings onto F-SBA-15 support promoted excellent performance towards CO2 methanation. The efficacy in CO2 methanation over Ni/F-SBA-15 increased with a sequence of 1%Ni/F-SBA-15 < 3%Ni/F-SBA-15 < 5%Ni/F-SBA-15 approximate to 10%Ni/F-SBA-15, indicating the superior performance and stability of 5%Ni/F-SBA-15. The increasing trend was due to the fibrous morphology of support which enhanced the quantity of Si-O-Ni bond, triggered better Ni dispersion, strengthen metal-support interaction, and increased the basicity. However, higher Ni loadings (10 wt %) onto F-SBA-15 slightly declined the performance and stability of CO2 methanation due to the limited spaces for substitution of Ni species with the silanol groups of F-SBA-15 upon the bulk Ni phase, poorer Ni dispersion, weaker metal-support interaction, and lower basicity. The new finding of combination between fibrous SBA-15 (F-SBA-15) with an optimum Ni loading contributed towards an outstanding performance and thus could be applied in various applications. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved
    corecore