15 research outputs found

    Non-Woven PGA/PVA Fibrous Mesh as an Appropriate Scaffold for Chondrocyte Proliferation

    Get PDF
    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation

    An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair.

    No full text
    AIM: To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. METHODS: Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. RESULTS: A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro-Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. CONCLUSION: Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue

    Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering : scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation

    No full text
    Crosslinked 3D porous collagen-polysaccharide scaffolds, prepared by freeze-drying, were modified with bovine platelet lysate (BPL) and evaluated in terms of chemical, physical and biological properties. Natural antibacterial polysaccharides like chitosan, chitin/chitosan-glucan complex and calcium salt of oxidized cellulose (CaOC) incorporated in collagen scaffolds affected not only chemo-physical properties of the composite scaffolds but also improved their biological properties, especially when BPL was presented. Lipophilic BPL formed microspheres in porous scaffolds while reduced by half their swelling ratio. The resistance of collagen sponges to hydrolytic degradation in water depended strongly on chemical crosslinking varying from 60 min to more than one year. According to in-vitro tests, chemically crosslinked scaffolds exhibited a good cellular response, cell–matrix interactions, and biocompatibility of the material. The combination of collagen with natural polysaccharides confirmed a significant positive synergistic effect on cultivation of cells as determined by MTS assay and PicoGreen method, as well as on angiogenesis evaluated by ex ovo Chick Chorioallantoic Membrane (CAM) assay. Contrary, modification only by BLP of pure collagen scaffolds exhibited decreased biocompatibility in comparison to unmodified pure collagen scaffold. We propose that the newly developed crosslinked collagen sponges involving bioactive additives could be used as scaffold for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration

    Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors

    No full text
    Michala Rampichová,1,2 Matej Buzgo,1 Andrea Míčková,1,2 Karolína Vocetková,2 Vera Sovková,2 Vera Lukášová,2 Eva Filová,2 Franco Rustichelli,2 Evžen Amler1,2 1Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštehrad, 2Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic Abstract: Bone and cartilage are tissues of a three-dimensional (3D) nature. Therefore, scaffolds for their regeneration should support cell infiltration and growth in all 3 dimensions. To fulfill such a requirement, the materials should possess large, open pores. Centrifugal spinning is a simple method for producing 3D fibrous scaffolds with large and interconnected pores. However, the process of bone regeneration is rather complex and requires additional stimulation by active molecules. In the current study, we introduced a simple composite scaffold based on platelet adhesion to poly-ε-caprolactone 3D fibers. Platelets were used as a natural source of growth factors and cytokines active in the tissue repair process. By immobilization in the fibrous scaffolds, their bioavailability was prolonged. The biological evaluation of the proposed system in the MG-63 model showed improved metabolic activity, proliferation and alkaline phosphatase activity in comparison to nonfunctionalized fibrous scaffold. In addition, the response of cells was dose dependent with improved biocompatibility with increasing platelet concentration. The results demonstrated the suitability of the system for bone tissue. Keywords: centrifugal spinning, 3D scaffold, platelets, growth factors, cytokines, PC
    corecore