357 research outputs found

    Bio- Matric Intelligent ATM System

    Get PDF
    Now a day, peoples have multiple bank accounts so money transactions play a vital role in the nature of trade. Today, ATMs and Credit cards are used for this purpose, the authentication of these transactions are unsecure. To overcome this shortcoming of money transactions, we proposes the idea of using fingerprints of customers as login multiple banking password in place of traditional pin number. Here, if the fingerprint is recognized, then it display the multiple banking screen. Then we can choose the bank which we need for transaction. The remaining feature are same as i.e., a reference fingerprint of the nominee or a close family member of the customer can be used if the customer is not available in case of emergencies. This proposed business model helps the society, mainly the rural people, by enhancing the security using Fingerprint recognition in Digital image processing. As the fingerprint of every person is unique and unchangeable, this biometric feature is used over the others

    Widespread genetic heterogeneity of human ribosomal RNA genes

    Get PDF
    Polymorphism drives survival under stress and provides adaptability. Genetic polymorphism of ribosomal RNA (rRNA) genes derives from internal repeat variation of this multicopy gene, and from interindividual variation. A considerable amount of rRNA sequence heterogeneity has been proposed but has been challenging to estimate given the scarcity of accurate reference sequences. We identified four rDNA copies on chromosome 21 (GRCh38) with 99% similarity to recently introduced reference sequence KY962518.1. We customized a GATK bioinformatics pipeline using the four rDNA loci, spanning a total 145 kb, for variant calling and used high-coverage whole-genome sequencing (WGS) data from the 1000 Genomes Project to analyze variants in 2504 individuals from 26 populations. We identified a total of 3791 variant positions. The variants positioned nonrandomly on the rRNA gene. Invariant regions included the promoter, early 5 ' ETS, most of 18S, 5.8S, ITS1, and large areas of the intragenic spacer. A total of 470 variant positions were observed on 28S rRNA. The majority of the 28S rRNA variants were located on highly flexible human-expanded rRNA helical folds ES7L and ES27L, suggesting that these represent positions of diversity and are potentially under continuous evolution. Several variants were validated based on RNA-seq analyses. Population analyses showed remarkable ancestry-linked genetic variance and the presence of both high penetrance and frequent variants in the 5 ' ETS, ITS2, and 28S regions segregating according to the continental populations. These findings provide a genetic view of rRNA gene array heterogeneity and raise the need to functionally assess how the 28S rRNA variants affect ribosome functions.Peer reviewe

    Emerging trends in the novel drug delivery approaches for the treatment of lung cancer

    Get PDF
    © 2019 Elsevier B.V. Cancer is one of the major diseases that cause a high number of deaths globally. Of the major types of cancers, lung cancer is known to be the most chronic form of cancer in the world. The conventional management of lung cancer includes different medical interventions like chemotherapy, surgical removal, and radiation therapy. However, this type of approach lacks specificity and also harms the adjacent normal cells. Lately, nanotechnology has emerged as a promising intervention in the management and treatment of lung cancers. Nanotechnology has revolutionized the existing modalities and focuses primarily on reducing toxicity and improving the bioavailability of anticancer drugs to the target tumor cells. Nanocarrier systems are being currently used extensively to exploit and to overcome the obstructions induced by cancers in the lungs. The nano-carrier-loaded therapeutic drug delivery methods have shown promising potential in treating lung cancer as its target is to control the growth of tumor cells. In this review, various modes of nano drug delivery options like liposomes, dendrimers, quantum dots, carbon nanotubes and metallic nanoparticles have been discussed. Nano-carrier drug delivery systems emerge as a promising approach and thus is expected to provide newer and advanced avenues in cancer therapeutics

    Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract

    Get PDF
    © 2019 Elsevier B.V. Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350–380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60–90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future

    ANTIOXIDANT AND ANTI-PROLIFERATIVE EFFECTS OF AN ETHYL ACETATE FRACTION OF THE HYDRO-ETHANOLIC EXTRACT OF SYNEDRELLA NODIFLORA (L) GAERTN

    Get PDF
    Objective: Synedrella nodiflora is traditionally used in the treatment of several ailments. Pharmacologically, this plant has anticonvulsant, sedative, anti-nociceptive and anti-proliferative effects. This study further investigated S. nodiflora for its antioxidant and in vitro inhibition of cancerous cell lines. Methods: Phytochemical assays, and the DPPH radical scavenging method were employed in preliminary screening for antioxidant activities of the crude hydro-ethanolic extract (SNE) and resulting fractions. The potent ethyl acetate fraction (EAF), was further investigated for total phenol and flavonoid contents, reducing power, lipid peroxidation potential, and cytotoxic effects on human breast cancer (MCF-7), leukemic (Jurkat), and normal liver (Chang’s liver) cell lines. Results: The extract contained phenols, flavonoids, tannins, glycosides, sterols, terpenoids, and alkaloids. It scavenged for DPPH with an IC50 of 114 µg/ml, whereas that of EAF was 8.9 µg/ml. EAF prevented peroxidation of egg lecithin at an IC50 of 24.01±0.08 µg/ml. These IC50s are four and three times lower than the reference standards. EAF produced anti-proliferative effects against MCF-7, and Jurkat cell lines with IC50s of 205.2 and 170.9 µg/ml, respectively. EAF had a high IC50 of 252.2 µg/ml against Chang’s liver cells. At 0.1 mg/ml EAF had similar total flavonoid content to SNE, but a significantly higher total phenol content. Conclusion: The ethyl acetate fraction of S. nodiflora, exhibited the most potent antioxidant activity. It inhibited the proliferation of breast and leukemic cancer cell lines, whiles having weak cytotoxic effect on normal liver cells. These can be explored for further drug development

    Increased Ventricular Premature Contraction Frequency During REM Sleep in Patients with Coronary Artery Disease and Obstructive Sleep Apnea

    Get PDF
    Background Patients with obstructive sleep apnea are reported to have a peak of sudden cardiac death at night, in contrast to patients without apnea whose peak is in the morning. We hypothesized that ventricular premature contraction (VPC) frequency would correlate with measures of apnea and sympathetic activity.Methods Electrocardiograms from a sleep study of 125 patients with coronary artery disease were evaluated. Patients were categorized by apnea-hypopnea index (AHI) into Moderate (AHI <15) or Severe (AHI>15) apnea groups. Sleep stages studied were Wake, S1, S2, S34, and rapid eye movement (REM). Parameters of a potent autonomically-based risk predictor for sudden cardiac death called heart rate turbulence were calculated.Results There were 74 Moderate and 51 Severe obstructive sleep apnea patients. VPC frequency was affected significantly by sleep stage (Wake, S2 and REM, F=5.8, p<.005) and by AHI (F=8.7, p<.005). In Severe apnea patients, VPC frequency was higher in REM than in Wake (p=.011). In contrast, patients with Moderate apnea had fewer VPCs and exhibited no sleep stage dependence (p=.19). Oxygen desaturation duration per apnea episode correlated positively with AHI (r2=.71, p<.0001), and was longer in REM than in non-REM (p<.0001). The heart rate turbulence parameter TS correlated negatively with oxygen desaturation duration in REM (r2=.06, p=.014).Conclusions Higher VPC frequency coupled with higher sympathetic activity caused by longer apnea episodes in REM sleep may be one reason for increased nocturnal death in apneic patients

    Prospecting in Western Ghats of Karnataka for indigenous Bacillus thuringiensis isolates harbouring novel crystal toxin genes for sugarcane pest management

    Get PDF
    Prospecting for potential novel Bacillus thuringiensis with new holotype crystal toxins was carried out in the Western ghats hill range of Karnataka state, India. From the soil samples collected three Bt isolates SBIKWG 12, SBIKWG 24 and SBIKWG 70 were isolated. Of these while the two isolates, namely SBIKWG 12 and SBIKWG 24 produced bipyramidal crystal toxins, the third isolate produced spherical crystal. PCR screening of the isolates revealed the presence of lepidopteran and coleopteran active cry genes. Partial sequences obtained from these isolates revealed the presence of multiple crystal toxin genes. BlastX analysis of the partial gene sequences indicated the potential for the occurrence of new holotype crystal toxin genes in SBIKWG 24 and SBIKWG 70

    Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) redox function negatively regulates NRF2

    Get PDF
    Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor Îş-light chain enhancer of activated B cells (NF-ÎşB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications
    • …
    corecore