30 research outputs found

    Effect of nonequilibrium phonons on hot-electron spin relaxation in n-type GaAs quantum wells

    Full text link
    We have studied the effect of nonequilibrium longitudinal optical phonons on hot-electron spin relaxation in nn-type GaAs quantum wells. The longitudinal optical phonons, due to the finite relaxation rate, are driven to nonequilibrium states by electrons under an in-plane electric field. The nonequilibrium phonons then in turn influence the electron spin relaxation properties via modifying the electron heating and drifting. The spin relaxation time is elongated due to the enhanced electron heating and thus the electron-phonon scattering in the presence of nonequilibrium phonons. The frequency of spin precession, which is roughly proportional to the electron drift velocity, can be either increased (at low electric field and/or high lattice temperature) or decreased (at high electric field and/or low lattice temperature). The nonequilibrium phonon effect is more pronounced when the electron density is high and the impurity density is low.Comment: 6 pages, 3 figure

    High-field electron transport in doped ZnO

    Get PDF
    Current-voltage characteristics have been measured for ZnO:Ga and Zn:Sb epitaxial layers with electron densities ranging from 1.4x10(17) cm(-3) to 1.1 x 10(20) cm(-3). Two-terminal samples with coplanar electrodes demonstrate virtually ohmic behavior until thermal effects come into play. Soft damage of the samples takes place at high currents. The threshold power (per electron) for the damage is nearly inversely proportional to the electron density over a wide range of electron densities. Pulsed voltage is applied in order to minimize the thermal effects, and thus an average electric field of 150 kV cm(-1) is reached in some samples subjected to 2 ns voltage pulses. The results are treated in terms of electron drift velocity estimated from the data on current and electron density under the assumption of uniform electric field. The highest velocity of similar to 1.5 x 10(7) cm s(-1) is found at an electric field of similar to 100 kV cm(-1) for the sample with an electron density of 1.4 x 10(17) cm(-3). The nonohmic behavior due to hot-electron effects is weak, and the dependence of the electron drift velocity on the doping resembles the variation of mobility

    Ultrafast decay of hot phonons in an AlGaN/AlN/AlGaN/GaN camelback channel

    Get PDF
    A bottleneck for heat dissipation from the channel of a GaN-based heterostructure field-effect transistor is treated in terms of the lifetime of nonequilibrium (hot) longitudinal optical phonons, which are responsible for additional scattering of electrons in the voltage-biased quasi-two-dimensional channel. The hot-phonon lifetime is measured for an Al0.33Ga0.67N/AlN/Al0.1Ga0.9N/GaN heterostructure where the mobile electrons are spread in a composite Al0.1Ga0.9N/GaN channel and form a camelback electron density profile at high electric fields. In accordance with plasmon-assisted hot-phonon decay, the parameter of importance for the lifetime is not the total charge in the channel (the electron sheet density) but rather the electron density profile. This is demonstrated by comparing two structures with equal sheet densities (1 × 1013 cm−2), but with different density profiles. The camelback channel profile exhibits a shorter hot-phonon lifetime of ∼270 fs as compared with ∼500 fs reported for a standard Al0.33Ga0.67N/AlN/GaN channel at low supplied power levels. When supplied power is sufficient to heat the electrons \u3e 600 K, ultrafast decay of hot phonons is observed in the case of the composite channel structure. In this case, the electron density profile spreads to form a camelback profile, and hot-phonon lifetime reduces to ∼50 fs

    Camelback channel for fast decay of LO phonons in GaN heterostructure field-effect transistor at high electron density

    Get PDF
    Fluctuation technique is used to measure hot-phonon lifetime in dual channel GaN-based configuration proposed to support high-power operation at high frequencies. The channel is formed of a composite Al0.1Ga0.9N/GaN structure situated in an Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN heterostructure. According to capacitance–voltage measurements and simultaneous treatment of Schrödinger–Poisson equations, the mobile electrons in this dual channel configuration form a camelback density profile at elevated hot-electron temperatures. The hot-phonon lifetime was found to depend on the shape of the electron profile rather than solely on its sheet density. The camelback channel with an electron sheet density of 1.8 × 1013 cm−2 demonstrates ultrafast decay of hot phonons at hot-electron temperatures above 600 K: the hot-phonon lifetime is below ∼60 fs in contrast to ∼600 fs at an electron sheet density of 1.2 × 1013 cm−2 obtained in a reference Al0.82In0.18N/AlN/GaN structure at 600 K. The results suggest a suitable method to increase the electron sheet density without the deleterious effect caused by inefficient hot-phonon decay observed in a standard design at similar electron densities

    Electron drift velocity in lattice-matched AlInN/AlN/GaN channel at high electric fields

    Get PDF
    Hot-electron transport was probed by nanosecond-pulsed measurements for a nominally undoped two-dimensional channel confined in a nearly lattice-matched Al0.82In0.18N/AlN/GaN structure at room temperature. The electric field was applied parallel to the interface, the pulsed technique enabled minimization of Joule heating. No current saturation was reached at fields up to 180 kV/cm. The effect of the channel length on the current is considered. The electron drift velocity is deduced under the assumption of uniform electric field and field-independent electron density. The highest estimated drift velocity reaches ∼3.2×107 cm/s when the AlN spacer thickness is 1 nm. At high fields, a weak (if any) dependence of the drift velocity on the spacer thickness is found in the range from 1 to 2 nm. The measured drift velocity is low for heterostructures with thinner spacers (0.3 nm)

    Plasmon-enhanced heat dissipation in GaN-based two-dimensional channels

    Get PDF
    Decay of nonequilibrium longitudinal optical (LO) phonons is investigated at room temperature in two-dimensional electron gas channels confined in nearly lattice-matched InAlN/AlN/GaN structures. A nonmonotonous dependence of the LO-phonon lifetime on the supplied electric power is reported for the first time and explained in terms of plasmon–LO-phonon resonance tuned by applied bias at a fixed sheet density (8×1012 cm−2). The shortest lifetime of 30±15 fs is found at the power of 20±10 nW/electron

    Hot-Electron Transport Noise and Power Dissipation in GaN Channels at High Density of Electrons

    No full text
    The experimental results on transport, noise, and dissipation of electric power for voltage-biased Si-doped GaN channels are compared with those of Monte Carlo simulation. The measured dissipated power shows a stronger hot-phonon effect than the simulated one. On the other hand, the experimental results on the electron drift velocity at high electric fields show a weaker hot-phonon effect as compared with the simulated one. The misfit can be reduced if a conversion of the friction-active nonequilibrium longitudinal optical phonons into the friction-passive longitudinal optical phonons is considered
    corecore