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Fluctuation technique is used to measure hot-phonon lifetime in dual channel GaN-based

configuration proposed to support high-power operation at high frequencies. The channel is formed

of a composite Al0.1Ga0.9N/GaN structure situated in an Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN

heterostructure. According to capacitance–voltage measurements and simultaneous treatment of

Schrödinger–Poisson equations, the mobile electrons in this dual channel configuration form a

camelback density profile at elevated hot-electron temperatures. The hot-phonon lifetime was found to

depend on the shape of the electron profile rather than solely on its sheet density. The camelback

channel with an electron sheet density of 1.8� 1013 cm�2 demonstrates ultrafast decay of hot phonons

at hot-electron temperatures above 600 K: the hot-phonon lifetime is below �60 fs in contrast to

�600 fs at an electron sheet density of 1.2� 1013 cm�2 obtained in a reference Al0.82In0.18N/AlN/

GaN structure at 600 K. The results suggest a suitable method to increase the electron sheet density

without the deleterious effect caused by inefficient hot-phonon decay observed in a standard design at

similar electron densities. VC 2011 American Institute of Physics. [doi:10.1063/1.3615284]

Gallium nitride heterostructure field-effect transistors

are promising power devices for microwave applications and

switching.1–4 Cut-off frequencies of short-gate transistors

exceed 200 GHz.5–7 It is proverbially believed that a higher

microwave power levels can be attained if the transistor

channel contains more electrons. In this regard, electron den-

sities over 3� 1013 cm�2 have been demonstrated in GaN-

based heterostructures with a composite AlInN/AlN barrier.8

The electrons are confined in the quantum well of nanomet-

ric thickness where the current density and power density

per unit volume are extremely high at high electric fields.

Unfortunately, deleterious effects due to heat accumulation,

mainly due to nearly immobile longitudinal optical (LO)

phonons which are not easily decayed to longitudinal acous-

tic (LA) phonons, come into play at high supplied power lev-

els. The thermal conductance helps to drain out the excess

LA phonons, but a different approach is needed to treat the

heat accumulated by non-equilibrium LO phonons (hot pho-

nons) emitted by hot electrons.9

Hot-phonon decay is often evaluated in terms of LO-

phonon lifetime.10 It has been suggested, based on experi-

mental data,11 that the lifetime is shorter if the three-dimen-

sional (3D) carrier density is closer to LO-phonon–plasmon

resonance.12 The signature of the resonance has also been

observed in a two-dimensional electron gas (2DEG).9,10 In

particular, a resonance-type non-monotonous dependence on

the electron density is resolved in phenomena involving hot-

electron transport,13,14 transistor cut-off frequency,13 and

transistor degradation.15 For standard GaN-based channels,

the resonance 2DEG density is near 6.5� 1012 cm�2 at low

electric fields, but the resonance shifts towards higher 2DEG

densities as the hot-electron temperature increases.10,16 In

voltage-biased channels, the hot electrons spread over a

larger volume, the plasma frequency decreases, and the reso-

nance is observed at higher 2DEG densities: 9.5� 1012

cm�2,13 1� 1013 cm�2,15 and (1.1–1.2)� 1013 cm�2.14

These resonance values are lower than the achievable

3� 1013 cm�2, and no benefit from the LO-phonon–plasmon

resonance is expected in the standard GaN-based channels at

these highest 2DEG densities. The camelback channel has

been proposed17 in order to increase the 2DEG density with-

out increasing the 3D electron density. In this communica-

tion, we experimentally explore the avenue of combining a

high 2DEG density (preferred for power operation) and ultra-

fast decay of LO phonons (useful for high-frequency opera-

tion and slow degradation of transistors).

The self-consistent solution of coupled Schrödinger–

Poisson equations for the reference single-channel

Al0.82In0.18N/AlN/GaN structure (Fig. 1, dashed line) is com-

pared with the profiles obtained for the composite-channel

Al0.82In0.18N/AlN/Al0.2Ga0.8N/GaN structure (solid lines).

The inset illustrates the band diagram of the dual channel

structure. The insertion of the thin Al0.2Ga0.8 N interlayer (2

nm) between the GaN and the AlN layers modifies the profile

in that it becomes wider and, despite of higher 2DEG den-

sity, the highest 3D electron density becomes lower (Fig. 1,

solid line at a 300 K). At elevated hot-electron temperatures,

the 3D density decreases further, and the camelback profile

develops (solid lines).

The experimental component of this study was carried

out on nominally undoped Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN

structures grown in a vertical low-pressure metal-organic

chemical vapor deposition system on a 2-in. sapphire sub-

strate. The results are presented for a structure that contains

a 2-lm thick GaN buffer layer, a 3-nm thick AlGaN inter-

layer, a 1 nm AlN spacer, and a 17-nm thick AlInN barrier.a)Electronic mail: sermuksnis@pfi.Lt.
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Schottky diodes were formed for density profile measure-

ments, transfer length model (TLM) patterns with coplanar

ohmic contacts composed of Ti/Al/Ni/Au, and transistors

were fabricated for noise and unity gain cutoff frequency

measurements, respectively. The electron sheet density is

1.8� 1013 cm�2 and the mobility is 530 cm2 V�1 s�1.

The measured electron density profiles for the

Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN (solid line) and the

Al0.82In0.18N/AlN/GaN (dashed line13) structures are com-

pared in Fig. 2. While the peak 3D densities are comparable,

the electron sheet density is considerably higher in the design

where some electrons occupy the Al0.1Ga0.9N interlayer even

at equilibrium (solid line, shoulder). A weak shoulder is also

resolved in the reference channel (dashed line).13 This

shoulder may be associated with an unintentionally grown

interlayer in the nominally single-channel structure.

The LO-phonon lifetime is extracted from the hot-electron

microwave noise measurements in the same manner as

described elsewhere.9,10,16 Figure 3 shows the results for the

Al0.82In0.18N/AlN/Al0.1Ga0.9N/GaN gateless structure with the

camelback channel. The value of�700 fs is found at low fields

(circles) followed with a rapid decrease down to �60 fs as the

field increases (triangles). A good uniformity of the wafer is

demonstrated from results for two samples of different length

(open and closed circles). The channel self-heating is weak at

fields below �5 kV for a pulse length of 2.7 ls as illustrated

by the negligible dependence on voltage pulse duration for 2.7

ls (circles) and 100 ns (triangles) pulses in the field range

(4–5) kV/cm. In a similar manner, the voltage pulses of 50 ns

are used to control the self-heating at higher fields.

The squares16 (Fig. 3, inset) illustrate the density depend-

ence of the LO-phonon lifetime at low fields for the standard

GaN-based single channels at electron densities above the res-

onance value. The lifetime increases with the 2DEG density,

and a value of �1.8 ps is expected for a single channel at

1.8� 1013 cm�2 (solid line). The camelback design shows a

shorter lifetime of �700 fs at this 2DEG density (inset,

circle). Notably, a considerably lower 2DEG density of

1.2� 1013 cm�2 is needed to obtain approximately the same

lifetime in the standard Al0.82In0.18N/AlN/GaN structure.10

The dependence of the LO-phonon lifetime on the

applied electric field can be explained in terms of the LO-

phonon–plasmon resonance. The LO-phonon and plasmon

energies are equal near 1� 1019 cm�3 in GaN if the plasma

is uniform and infinite, but neither is true for 2DEG chan-

nels. According to a slab model, the in-plane plasma fre-

quency is lower and the resonance 3D density is higher.

Moreover, the plasma frequency depends on slab thickness.

Since the channel half-width changes with the hot-electron

temperature (Fig. 1), the LO-phonon–plasmon resonance can

be tuned electrically.10,16

Figure 4 illustrates the LO-phonon lifetime as a function

of the excess noise temperature. The results for the camel-

back channel (circles) are compared with those available for

the reference channel (squares10). The lifetime decreases as

the temperature increases. The decrease from the �600 fs

down to the �60 fs of the reference channel (squares) has

been interpreted in terms of the hot-phonon decay enhanced

FIG. 1. (Color online) Calculated electron 3D density profiles for a standard

structure (dashed line) and the camelback structure (solid lines) at different

hot-electron temperatures.

FIG. 2. (Color online) Capacitance–voltage measurements of electron 3D

density profile in the camelback structure (solid line) and a standard channel

(dashed line, see Ref. 13).

FIG. 3. (Color online) Field-dependent LO-phonon lifetime in the camel-

back channel for voltage pulse lengths of 2.7 ls (circles) and 100 ns (trian-

gles). Open and closed circles stand for two samples from the same wafer.

Inset compares the camelback channel at 293 K (circle) with single channels

(squares, see Ref. 16); triangle is the lifetime for the camelback channel at

hot-electron temperature of 600 K. Curves guide the eye.
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when the LO-phonon–plasmon resonance is approached

upon electron heating.10 Since the equilibrium plasma fre-

quency exceeds the LO-phonon frequency considerably,

strong electron heating is needed to bring the system to the

resonance in the reference channel. The camelback channel

contains even higher 2DEG density. Nevertheless, the den-

sity profile (Fig. 2, solid line) is designed to make the plasma

frequency close to the LO-phonon frequency. As a result, the

decrease of the hot-phonon lifetime is observed at moderate

hot-electron noise temperatures (Fig. 4, circles).

The resonance can be tuned with the electron tempera-

ture or the supplied power at the electron densities higher

than the resonance value. However, if the electron sheet den-

sity is too high, no resonance can be reached for reasonable

applied power levels before the catastrophic breakdown sets

in. On the other hand, below the breakdown, the shorter hot-

phonon lifetime in the camelback channel should ensure

lower LO-phonon temperature as compared to the standard

channel supposing that the both channels operate at the same

power level or, alternatively, at the same LA-phonon temper-

ature (the lattice temperature). If the high-field electron

transport is limited by the scattering on the LO phonons, the

camelback structure is beneficial for reaching higher electron

drift velocity at a given high electric field.

The main drawback of the investigated camelback chan-

nel is alloy scattering in the AlN/Al0.1Ga0.9N interlayer: the

measured mobility is lower than typical values at this electron

density. As a result, the access resistance of the source–drain

part of the channel of the camelback heterostructure field-

effect transistor would exceed that in the control transistor

grown without the interlayer at the same conditions with simi-

lar sheet electron densities. However, since transistor operation

depends to a relatively large extent on the high-field mobility,

note that the low and high field mobilities are governed by dif-

ferent scattering mechanisms, the fabricated camelback field-

effect transistor demonstrates a 70% higher fTn2D product

(where fT is the cutoff frequency and n2D is the sheet electron

density) as compared to the same product of the control de-

vice, which bodes well for the structure under discussion.

Power transistors are known to suffer from degradation

under DC and particularly RF stress, and hot phonons are

known to be responsible, in part, for device degradation.15

The camelback channel demonstrates ultrafast decay of hot

phonons at elevated hot-electron temperatures. Therefore,

this design should mitigate degradation and increase reliabil-

ity of device operation.

In conclusion, a camelback channel confined in the GaN

heterostructure is grown and investigated experimentally.

Ultrafast decay of LO phonons is demonstrated at a high sheet

density of mobile electrons. The electron sheet density is

increased without sacrificing the rate of the hot-phonon decay,

which is critical for high performance GaN heterostructure

field effect transistors. The benefits of the camelback density

profile are evident: the approach is sufficiently flexible to

allow for engineering of the channel composition in order to

achieve the fastest decay of hot phonons under whichever sup-

plied power one expects to apply under operation.
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Phys. Lett. 95, 223504 (2009).
16A. Matulionis, J. Liberis, I. Matulionienė, M. Ramonas, E. �Sermukšnis, J.
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FIG. 4. (Color online) The hot-phonon lifetime as a function of the excess

noise temperature in the reference channel (squares, see Ref. 10) and the

camelback channel (circles). Curves guide the eye.
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