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and A. Matulionis2
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(Received 17 May 2011; accepted 7 October 2011; published online 21 November 2011)

A bottleneck for heat dissipation from the channel of a GaN-based heterostructure field-effect transistor

is treated in terms of the lifetime of nonequilibrium (hot) longitudinal optical phonons, which are

responsible for additional scattering of electrons in the voltage-biased quasi-two-dimensional channel.

The hot-phonon lifetime is measured for an Al0.33Ga0.67N=AlN=Al0.1Ga0.9N=GaN heterostructure

where the mobile electrons are spread in a composite Al0.1Ga0.9N=GaN channel and form a camelback

electron density profile at high electric fields. In accordance with plasmon-assisted hot-phonon decay,

the parameter of importance for the lifetime is not the total charge in the channel (the electron sheet

density) but rather the electron density profile. This is demonstrated by comparing two structures with

equal sheet densities (1� 1013 cm�2), but with different density profiles. The camelback channel

profile exhibits a shorter hot-phonon lifetime of �270 fs as compared with �500 fs reported for a

standard Al0.33Ga0.67N=AlN=GaN channel at low supplied power levels. When supplied power is

sufficient to heat the electrons >600 K, ultrafast decay of hot phonons is observed in the case of the

composite channel structure. In this case, the electron density profile spreads to form a camelback

profile, and hot-phonon lifetime reduces to �50 fs. VC 2011 American Institute of Physics.

[doi:10.1063/1.3660264]

I. INTRODUCTION

GaN-based heterostructure field effect transistors

(HFETs) are poised to dominate the high frequency-high

power amplifier and switching markets.1,2 In fact, AlGaN-

based HFET structures are already available commercially

for high power, moderate frequency applications. In the

quest for increased cutoff frequencies, shorter gate lengths

have been employed, but two-dimensional electron gas den-

sity (2DEG density) has also been observed to play a role in

cutoff frequencies among devices from the same group.3,4

For a given gate length, the cutoff frequencies tend to

decrease with increasing 2DEG density. This can be

explained in terms of the buildup of population of longitudi-

nal optical (LO) phonons in the GaN channel.5–7 The physi-

cal origin of the buildup is related to the fact that the time

associated with the emission of LO phonons by hot electrons

is much shorter than the time associated with the decay of

these LO phonons into acoustic phonons. Consequently, the

population builds-up, causes stronger electron scattering, and

results in a decrease in electron drift velocity.6,8 In addition

to affecting the frequency performance of the HFET, the

buildup is believed to be linked to the device reliability since

the hot phonon population inevitably stimulates defect gen-

eration. Moreover, this can be envisaged when one considers

that the hot phonons are crowded in a relatively narrow por-

tion of the k-space where their equivalent temperature

becomes extremely high.9 In this regard, the generation of

locally large atomic vibrations and ensuing new crystal

defects is likely. Correlation of the hot-phonon lifetime and

device degradation has been indirectly observed.10

The hot-phonon lifetime is a function of electron den-

sity, electron and ambient temperatures, and other condi-

tions. In particular, time-resolved Raman studies in bulk

GaN show that the hot-phonon lifetime decreases from about

2.5 to 0.35 ps as the carrier density increases from 1016 to

1019 cm�3.11 The monotonous decrease of the lifetime in

bulk GaN is understood in terms of coupling of LO phonons

with plasmons.12

Estimating the average three-dimensional electron den-

sity (3D density) in a HFET channel simply by dividing the

sheet density by the effective width of the triangular quan-

tum well at the Fermi energy we see that densities of the

order of 1019 cm�3 and higher are readily attainable in the

GaN channel of a HFET. As such, one might expect the hot-

phonon lifetimes to be less than 0.35 ps in most 2DEGs.

However, this often does not turn out to be the case. Experi-

mental data on the hot-phonon lifetime in GaN 2DEGs at

low applied fields obtained mainly through the microwave

noise technique13 are illustrated in Fig. 1 (open symbols)

together with the experimental results for bulk GaN (closed

circles) and those for the model of coupled plasmons and LO

phonons (dashed line).

For an infinite electron plasma, the frequencies of

uncoupled modes of plasmons and LO phonons would cross

at the electron density,

ncr ¼ x2
LO

m�ee
e2

; (1)
a)Author to whom correspondence should be addressed. Electronic mail:

s2jleach@vcu.edu.
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where xLO is the LO-phonon frequency at zero electron den-

sity and e is the dielectric constant.14 The coupled modes

become most important at the crossover electron density,

near 1019 cm�3 in bulk GaN. When the average 3D density

in the channel is estimated as the 2DEG density divided by

the width of the triangular well at the Fermi energy, the

crossover is estimated to take place at �5� 1012 cm�2 in a

typical GaN 2DEG channel.

The fastest decay of hot phonons is expected in the

vicinity of the crossover. This expectation is in reasonable

agreement with the non-monotonic resonance-type depend-

ence of the hot-phonon lifetime on the 2DEG density meas-

ured at low fields for various nitride and arsenide

heterostructure 2DEG channels.14 The resonance for the

nitride 2DEG channels is illustrated in Fig. 1 (open symbols

and solid line).

In light of the resonance phenomenon, the key to ultra-

fast decay of hot-phonons at high 2DEG densities (higher

than the resonance 2DEG density estimated for standard

2DEG channels, Fig. 1) is in spreading the electrons in real

space so that their 3D density can be made closer to the

crossover density.16 In this work, we illustrate this concept

by presenting the measured hot-phonon lifetimes for two

similar samples with almost identical 2DEG densities

(1� 1013 cm�2) when a lower average bulk electron density

is achieved in a composite Al0.1Ga0.9N=GaN channel. The

composite structure exhibits a “camelback” electron density

profile under electron heating. The camelback profile is

expected to have a bulk electron density closer to the reso-

nance density needed to achieve the shortest hot-phonon

lifetime.

II. SIMULATION

In order to estimate the effects of the camelback channel

on the electron distribution in the 2DEG, Schrödinger–Poisson

equations were solved for the structure in question as well as a

standard HFET structure without the Al0.1Ga0.9N interlayer.

Results from the calculation are displayed in Fig. 2. One can

observe two important points in the camelback device from

Fig. 2. First, the conduction band edge changes from the typi-

cal quasi-triangular well shape in the vicinity where the

2DEG ultimately forms into a pair of quasi-triangular wells

due to the conduction band offsets at both the

AlN=Al0.1Ga0.9N and Al0.1Ga0.9N=GaN interfaces. This phe-

nomenon gives rise to the second and most important point:

despite the same total charge in the channel (1� 1013 cm�2),

the electrons have been effectively spread out in the camel-

back channel and resulted in a reduced peak 3D electron den-

sity as compared to the 2DEG in the standard structure. This

is important as the 3D electron density is believed to be the

parameter responsible for hot-phonon interaction with plas-

mons; once the 3D density is reduced, the hot-electron–hot-

phonon system is closer to the plasmon–LO-phonon crossover

and exhibits shorter hot-phonon lifetimes.

In light of the fact that hot electrons within a GaN-based

HFET channel are known to reach thousands of K under

bias, Schrödinger–Poisson equations have been again solved

at elevated electron temperatures for the camelback struc-

ture. The results are displayed in Fig. 3. One can see the

expected spreading of the electron distribution with the tem-

perature, resulting from the increased occupation of upper

subbands by hot electrons in the coupled wells of the com-

posite channel. Due to this, the camelback shape of the pro-

file for which the structure is named begins to emerge; it

appears as though the original 2DEG is splitting, with the re-

sultant 2DEG having lower overall 3D density but in fact

containing the same total charge (1� 1013 cm�2).

III. EXPERIMENT

A camelback HFET structure was grown on a sapphire

substrate by metalorganic chemical vapor deposition

(MOCVD). The structure consisted of a low temperature

FIG. 1. (Color online) A survey of measured low field hot-phonon lifetimes

for bulk GaN (closed circles, Ref. 11) and various GaN-based 2DEG chan-

nels (open symbols, Refs. 7, 14, 15) as well as the (Al0.1Ga0.9N=GaN) cam-

elback channel (closed star) presented in this work. Dashed line stands for

plasmon–LO-phonon model (Ref. 12). Solid line guides the eye. The reso-

nance density is �7� 1012 cm�2.

FIG. 2. (Color online) Calculated conduction band edge and electron 3D

density for a standard (dashed lines) as well as the Al0.1Ga0.9N camelback

channel structure (solid lines). The total numbers of electrons are equal

(1� 1013 cm�2) in each channel.
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AlN buffer layer followed by 2 microns of GaN, a 2 nm

Al0.1Ga0.9N camelback layer, a 1 nm AlN spacer layer, and a

20 nm Al0.33Ga0.67N barrier layer. Trimethyl-gallium, tri-

methyl-aluminum, and ammonia were used as the Ga, Al,

and N sources, respectively. Ni=Au and Ti=Al=Ni=Au metal

stacks were deposited to fabricate Schottky diodes as well as

Ohmic contacts for transmission line method (TLM) pat-

terns, respectively. The diodes were used for capacitance–

voltage measurements to assess the total charge density of

the mobile electrons (2DEG density) and the electron 3D

density profile. The TLM patterns were used for microwave

noise analysis to assess the hot-phonon lifetime. In these

measurements, the noise temperature of the structure is

measured as a function of applied power during voltage

pulsing.13 The data are then compared with a standard

AlGaN=AlN=GaN structure7 without the composite channel

to assess the effect of the camelback profile on the electron

distribution as well as the hot-phonon lifetime.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

From the simulations, it is apparent that the camelback

approach is effective in reducing the peak 3D density of a

2DEG with a fixed total charge (1� 1013 cm�2 in this case).

To access this information experimentally, capacitance–-

voltage (C–V) measurements can be employed to plot elec-

tron 3D density profiles as a function of the depth into the

structure. Subsequently, the total 2DEG density can be esti-

mated by integrating these 3D densities obtained from the

C–V measurement. Shown in Fig. 4 are the experimental

density profiles for the camelback structure as well as a

standard AlGaN=AlN=GaN structure for comparison. The

standard structure was selected due to its similarity to the

camelback structure in terms of the total 2DEG density;

through integration, the standard and camelback structures

exhibit total 2DEG densities of 0.99� 1013 and 1.02� 1013

cm�2. Despite the similarity in 2DEG densities, the half-

width of the 2DEG in the camelback structure (�0.8 nm) is

larger than that of the standard structure (�0.6 nm), as antici-

pated from the simulation. Thus, the camelback structure

with a lower 3D electron density than the standard structure

should exhibit a shorter hot-phonon lifetime than the stan-

dard structure.

To obtain the hot-phonon lifetime in a 2DEG, the micro-

wave noise technique is employed.13 In this technique, volt-

age pulses are applied to a pair of Ohmic contacts, and the

noise power emitted from the channel at 10 GHz is compared

to that of a blackbody radiator kept at a known temperature.

Since the sample is not a true blackbody, additional measure-

ments are performed for estimation of the sample reflection

coefficient at each bias and power loss in the input micro-

wave circuit. At 10 GHz, low frequency sources of noise

such as 1=f noise and noise associated with trapping can be

neglected—the microwave noise can be attributed to electron

scattering.

Figure 5 shows the measured excess noise temperature

(temperature in excess of room temperature) as a function of

the power supplied to an average electron present in the cam-

elback channel. The circles represent the temperature esti-

mated for voltage pulse duration of 2.7 ls while the squares

and triangles stand for 100 and 50 ns pulse durations, respec-

tively. The equivalent results for both pulse widths at moder-

ate pulsed power in the camelback structure indicate

negligible self-heating. Additionally, no evidence of an addi-

tional source of noise arising from electronic transitions

from “shared” states (between the Al0.1Ga0.9N and GaN) to

“confined” states and back to the “shared” states17 could be

observed, validating the technique’s use in the camelback

structure.

Consider power dissipated by hot phonons. Once a con-

stant hot-phonon lifetime sLO is assumed, the dissipated

power is proportional to the excess occupancy of the hot

phonon modes, Pd ¼ A N�LO � N0

� �
where N�LO is the equiva-

lent occupancy of the LO-phonon states (occupied by the hot

phonons emitted by the hot electrons) and A ¼ �hxLO=sLO.

For the dominant electron–LO-phonon interaction and strong

hot-phonon effects, the noise temperature, Tnoise,

FIG. 4. (Color online) Electron 3D density profiles measured by

capacitance–voltage technique for the camelback structure (solid) as well as

the standard structure (dashed).

FIG. 3. (Color online) Calculated electron 3D density as a function of elec-

tron temperature for the camelback structure. In each curve, the integrated

density of electrons equals 1� 1013 cm�2. The dual peaked 2DEG (camel-

back) is pronounced at elevated temperatures.

104504-3 Leach et al. J. Appl. Phys. 110, 104504 (2011)
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approximately equals the hot-electron temperature, Te, while

the latter almost equals the equivalent hot-phonon tempera-

ture TLO.18 Thus, the equivalent occupancy N�LO can be esti-

mated after the Bose–Einstein formula if T�LO � Te is

assumed (the validity of the assumption has been checked

previously17,19,20). This leads to

Pd ¼ A exp �hxLO

.
kBTe

� �
� 1

h i�1
�

� exp �hxLO

.
kBT0

� �
� 1

h i�1
�
: (2)

Equation (2) is a modified Arrhenius law. It states that an

electron can take part in power dissipation if its energy

exceeds the LO phonon energy. Solid lines in Fig. 6 illustrate

Eq. (2) when constant values of 200 and 300 fs are used for

the hot-phonon lifetime. Note that the experimental data

(symbols) remain in between the curves in the temperature

range below �600 K (�1.6� 10�3 K�1). In this range, the

power dissipation is mainly controlled by the electron inter-

action with the hot LO phonons treated in terms of constant

hot-phonon lifetime.However, the hot-phonon lifetime seems

to depend on the applied power at high temperatures, and a

dynamic lifetime can be introduced,

s�LO ¼ �hxLO
dN�LO

.
dPd

: (3)

Figure 7 shows the results for the dynamic hot-phonon

lifetime as a function of the supplied power for the camel-

back structure (squares). At low–moderate supplied pulsed

powers (<10 nW=e), the hot-phonon lifetime for the camel-

back channel structure is nearly constant and approximately

equals �270 fs.

Electron energy dissipation is often treated in terms of

hot-electron energy relaxation time. Under a fixed value of

the relaxation time, senergy, the electron temperature increases

linearly with applied power, PA, in accordance with

kB Te � T0ð Þ ¼ PAsenergy. The energy relaxation time at zero

applied power is close to 800 fs (solid line in Fig. 5). This

value exceeds the low-power value of the hot-phonon life-

time of 270 fs estimated in the power range below 10

nW=electron where the lifetime is almost independent of the

power (Fig. 7, squares). The energy relaxation time appears

to depend on the applied power as well. In this case, a

dynamic energy relaxation time can be introduced,

s�energy ¼ kB dTe=dPAð Þ, which is plotted in Fig. 7 (circles).

The value of the energy relaxation time appears to be

�700–800 fs under low (<1 nW=electron) supplied power,

but decreases with increasing supplied power, and eventually

s�energy merges with the dynamic hot-phonon relaxation time

s�LO at a power of �10 nW=electron. This happens at a hot-

electron temperature exceeding �600 K (Fig. 5) when many

of the electrons have sufficient energy to emit LO phonons.

Figure 8 compares the hot-phonon lifetime for two cam-

elback channels (triangles and stars) and a reference channel

(squares) when the channels have the same 2DEG density

FIG. 7. (Color online) Dynamic energy relaxation time (circles) and

dynamic hot-phonon lifetime (squares) as functions of the supplied power

for the camelback structure.

FIG. 6. (Color online) Arrhenius plot of experimental dissipated power

against inverted noise temperature for the camelback structure (symbols)

along with Eq. (2) that assumes constant hot-phonon lifetimes of 200 fs and

300 fs (solid lines, blue and red, respectively).

FIG. 5. (Color online) Measured excess noise temperature, equal to the elec-

tron temperature, for the camelback structure as a function of applied power.

Circles represent pulse widths of 2.7ls, squares stand for 100 ns, and trian-

gles represent 50 ns.

104504-4 Leach et al. J. Appl. Phys. 110, 104504 (2011)
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(1� 1013 cm�2). Two important phenomena are noted. First,

the low-power value of the hot-phonon lifetime is reduced

from �500 fs in the standard channel to �270 fs in the cam-

elback channel. Next, both the camelback channel as well as

the standard channel exhibit a rapid decline in the hot-

phonon lifetime at high power levels, but several times

higher power is needed for the decline to take place in the

standard channel. The properties of the camelback channel

are reproducible (stars and triangles).

Let us discuss the results. Despite nearly identical

2DEG density (1� 1013 cm�2), the channels have different

electron density profiles (Fig. 4). Since the electron 3D den-

sity is lower in the camelback channel, and the plasma fre-

quency is closer to that of the uncoupled LO phonons. In

accordance with the plasmon-assisted decay of hot phonons,

the camelback channel demonstrates the reduced hot-phonon

lifetime at low power, Fig. 8 (stars, triangles). Having said

this, one cannot rule out the possibility that the phonon life-

time in the camelback channel is shorter at low power simply

as a result of the addition of the AlGaN alloy, as theory pre-

dicts21 and experiment has shown22,23 the phonon lifetime to

be shorter in AlN as compared to GaN. Further experiments

utilizing camelback channels with different compositions

and 2DEG densities will elucidate this. Nevertheless, under

electron heating, the power-assisted spreading of the electron

density profile takes place and causes the 3D density to

approach the plasmon–LO-phonon crossover value.14 This

happens in both the camelback channel as well as the stand-

ard structure, and the associated rapid decline in hot-phonon

lifetime is observed at elevated power levels. However, the

camelback structure exhibits the rapid decline in hot-phonon

lifetime at a lower supplied power than the standard struc-

ture, despite having equal total 2DEG densities. This point

indicates that the short lifetimes observed in the camelback

channel are associated with LO-phonon–plasmon interac-

tions and not merely due to an intrinsically shorter lifetime

in the camelback channel.

The decline in hot-phonon lifetime with supplied power

is attributed to a significant spreading of the electron density

profile when the electrons begin to fill the second subband of

the quantum well at the hot-electron temperatures associated

with these supplied powers (above 600 K according to Figs.

5 and 6). Such a phenomenon is evidenced from the simula-

tion in Fig. 3 which shows the electron profile as a function

of the electron temperature. Significant profile spreading

takes place between temperatures from 500 to 1000 K

according to Fig. 3. Higher electron temperatures and conse-

quently higher applied power are required to fill the upper

subbands in the standard structure,14 and therefore the rapid

decline of the hot-phonon lifetime is not achieved until sev-

eral times higher power is applied to the standard structure.

The camelback structure has been successfully designed to

reduce the 3D density of electrons in a HFET channel at zero

bias and demonstrates a shorter low-power value of the hot-

phonon lifetime at a given 2DEG density. Moreover, it also

exhibits a lower threshold for the rapid decline of the hot-

phonon lifetime caused by the power-assisted spreading of

the 2DEG profile.

V. CONCLUSIONS

The effect of hot phonons on HFET devices cannot be

overstated in that hot phonons suppress electron velocity,

can stimulate a formidable source of degradation in HFET

devices, and essentially frustrate attempts to increase the

2DEG density in HFET channels in the quest to achieve

higher frequencies and higher output powers. For this reason,

the ability to tune the hot phonon lifetime technologically

while maintaining the total 2DEG electron density is an im-

portant finding and crucial for advanced device design. We

know that the hot-phonon effect can only be mitigated in

2DEG channels if the hot-phonon lifetime can be reduced.

This may be achieved technologically by carefully designing

the heterostructure such that the 2DEG density is near the

plasmon–LO-phonon crossover value under operating

conditions.

The Al0.1Ga0.9N layer for a camelback channel

described in this work could alternatively be replaced

with the InGaN layer sandwiched between two GaN

layers in the channel, or a number of other combinations

of InGaN and AlGaN-based composite channels. In this

sense one can envision a carefully tailored heterostructure

in which the total number of electrons in the channel is

high but the 2DEG is spread out and a lower volume den-

sity of electrons is attained. In this way, relatively high

powers can be achieved while simultaneously reducing

the hot-phonon lifetime and its corresponding deleterious

effects.
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back channels (stars, triangles) with equal 2DEG densities (1� 1013 cm�2).
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