31,204 research outputs found

    The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit

    Full text link
    Recent ATLAS data significantly extend the exclusion limits for supersymmetric particles. We examine the impact of such data on global fits of the constrained minimal supersymmetric standard model (CMSSM) to indirect and cosmological data. We calculate the likelihood map of the ATLAS search, taking into account systematic errors on the signal and on the background. We validate our calculation against the ATLAS determinaton of 95% confidence level exclusion contours. A previous CMSSM global fit is then re-weighted by the likelihood map, which takes a bite at the high probability density region of the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has clarified explanation of our handling of signal systematic

    Coherent states for compact Lie groups and their large-N limits

    Full text link
    The first two parts of this article surveys results related to the heat-kernel coherent states for a compact Lie group K. I begin by reviewing the definition of the coherent states, their resolution of the identity, and the associated Segal-Bargmann transform. I then describe related results including connections to geometric quantization and (1+1)-dimensional Yang--Mills theory, the associated coherent states on spheres, and applications to quantum gravity. The third part of this article summarizes recent work of mine with Driver and Kemp on the large-N limit of the Segal--Bargmann transform for the unitary group U(N). A key result is the identification of the leading-order large-N behavior of the Laplacian on "trace polynomials."Comment: Submitted to the proceeding of the CIRM conference, "Coherent states and their applications: A contemporary panorama.

    Effect of venting range hood flow rate on size-resolved ultrafine particle concentrations from gas stove cooking

    Get PDF
    Cooking is the main source of ultrafine particles (UFP) in homes. This study investigated the effect of venting range hood flow rate on size-resolved UFP concentrations from gas stove cooking. The same cooking protocol was conducted 60 times using three venting range hoods operated at six flow rates in twin research houses. Size-resolved particle (10–420 nm) concentrations were monitored using a NanoScan scanning mobility particle sizer (SMPS) from 15 min before cooking to 3 h after the cooking had stopped. Cooking increased the background total UFP number concentrations to 1.3 × 103 particles/cm3 on average, with a mean exposure-relevant source strength of 1.8 × 1012 particles/min. Total particle peak reductions ranged from 25% at the lowest fan flow rate of 36 L/s to 98% at the highest rate of 146 L/s. During the operation of a venting range hood, particle removal by deposition was less significant compared to the increasing air exchange rate driven by exhaust ventilation. Exposure to total particles due to cooking varied from 0.9 to 5.8 × 104 particles/cm3·h, 3 h after cooking ended. Compared to the 36 L/s range hood, higher flow rates of 120 and 146 L/s reduced the first-hour post-cooking exposure by 76% and 85%, respectively. © 2018 Crown Copyright. Published with license by Taylor & Francis Group, LLC

    R-parity violating resonant stop production at the Large Hadron Collider

    Full text link
    We have investigated the resonant production of a stop at the Large Hadron Collider, driven by baryon number violating interactions in supersymmetry. We work in the framework of minimal supergravity models with the lightest neutralino being the lightest supersymmetric particle which decays within the detector. We look at various dilepton and trilepton final states, with or without b-tags. A detailed background simulation is performed, and all possible decay modes of the lighter stop are taken into account. We find that higher stop masses are sometimes easier to probe, through the decay of the stop into the third or fourth neutralino and their subsequent cascades. We also comment on the detectability of such signals during the 7 TeV run, where, as expected, only relatively light stops can be probed. Our conclusion is that the resonant process may be probed, at both 10 and 14 TeV, with the R-parity violating coupling {\lambda}"_{312} as low as 0.05, for a stop mass of about 1 TeV. The possibility of distinguishing between resonant stop production and pair-production is also discussed.Comment: 20 pages, 4 figures, 6 tables; Version accepted by JHE

    Tractable Pathfinding for the Stochastic On-Time Arrival Problem

    Full text link
    We present a new and more efficient technique for computing the route that maximizes the probability of on-time arrival in stochastic networks, also known as the path-based stochastic on-time arrival (SOTA) problem. Our primary contribution is a pathfinding algorithm that uses the solution to the policy-based SOTA problem---which is of pseudo-polynomial-time complexity in the time budget of the journey---as a search heuristic for the optimal path. In particular, we show that this heuristic can be exceptionally efficient in practice, effectively making it possible to solve the path-based SOTA problem as quickly as the policy-based SOTA problem. Our secondary contribution is the extension of policy-based preprocessing to path-based preprocessing for the SOTA problem. In the process, we also introduce Arc-Potentials, a more efficient generalization of Stochastic Arc-Flags that can be used for both policy- and path-based SOTA. After developing the pathfinding and preprocessing algorithms, we evaluate their performance on two different real-world networks. To the best of our knowledge, these techniques provide the most efficient computation strategy for the path-based SOTA problem for general probability distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental Algorithms 2016 and published by Springer in the Lecture Notes in Computer Science series on June 1, 2016. Includes typographical corrections and modifications to pre-processing made after the initial submission to SODA'15 (July 7, 2014

    Bayesian Conditioning, the Reflection Principle, and Quantum Decoherence

    Get PDF
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's probabilities to satisfy van Fraassen's [1984] reflection principle (which entails a related constraint pointed out by Goldstein [1983]). We then exhibit the specialized assumption needed to recover Bayesian conditioning from an analogous reflection-style consideration. Bringing the argument to the context of quantum measurement theory, we show that "quantum decoherence" can be understood in purely personalist terms---quantum decoherence (as supposed in a von Neumann chain) is not a physical process at all, but an application of the reflection principle. From this point of view, the decoherence theory of Zeh, Zurek, and others as a story of quantum measurement has the plot turned exactly backward.Comment: 14 pages, written in memory of Itamar Pitowsk

    Effects of invisible particle emission on global inclusive variables at hadron colliders

    Full text link
    We examine the effects of invisible particle emission in conjunction with QCD initial state radiation (ISR) on quantities designed to probe the mass scale of new physics at hadron colliders, which involve longitudinal as well as transverse final-state momenta. This is an extension of our previous treatment, arXiv:0903.2013, of the effects of ISR on global inclusive variables. We present resummed results on the visible invariant mass distribution and compare them to parton-level Monte Carlo results for top quark and gluino pair-production at the LHC. There is good agreement as long as the visible pseudorapidity interval is large enough (eta ~ 3). The effect of invisible particle emission is small in the case of top pair production but substantial for gluino pair production. This is due mainly to the larger mass of the intermediate particles in gluino decay (squarks rather than W-bosons). We also show Monte Carlo modelling of the effects of hadronization and the underlying event. The effect of the underlying event is large but may be approximately universal.Comment: 22 pages, expanded sections and other minor modifications. Version published in JHE

    Generalized Totalizer Encoding for Pseudo-Boolean Constraints

    Full text link
    Pseudo-Boolean constraints, also known as 0-1 Integer Linear Constraints, are used to model many real-world problems. A common approach to solve these constraints is to encode them into a SAT formula. The runtime of the SAT solver on such formula is sensitive to the manner in which the given pseudo-Boolean constraints are encoded. In this paper, we propose generalized Totalizer encoding (GTE), which is an arc-consistency preserving extension of the Totalizer encoding to pseudo-Boolean constraints. Unlike some other encodings, the number of auxiliary variables required for GTE does not depend on the magnitudes of the coefficients. Instead, it depends on the number of distinct combinations of these coefficients. We show the superiority of GTE with respect to other encodings when large pseudo-Boolean constraints have low number of distinct coefficients. Our experimental results also show that GTE remains competitive even when the pseudo-Boolean constraints do not have this characteristic.Comment: 10 pages, 2 figures, 2 tables. To be published in 21st International Conference on Principles and Practice of Constraint Programming 201
    • …
    corecore