53,581 research outputs found

    Linear Finite-Field Deterministic Networks With Many Sources and One Destination

    Get PDF
    We find the capacity region of linear finite-field deterministic networks with many sources and one destination. Nodes in the network are subject to interference and broadcast constraints, specified by the linear finite-field deterministic model. Each node can inject its own information as well as relay other nodes' information. We show that the capacity region coincides with the cut-set region. Also, for a specific case of correlated sources we provide necessary and sufficient conditions for the sources transmissibility. Given the "deterministic model" approximation for the corresponding Gaussian network model, our results may be relevant to wireless sensor networks where the sensing nodes multiplex the relayed data from the other nodes with their own data, and where the goal is to decode all data at a single "collector" node.Comment: 5 pages, 3 figures, submitted to ISIT 201

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Monotone Volume Formulas for Geometric Flows

    Get PDF
    We consider a closed manifold M with a Riemannian metric g(t) evolving in direction -2S(t) where S(t) is a symmetric two-tensor on (M,g(t)). We prove that if S satisfies a certain tensor inequality, then one can construct a forwards and a backwards reduced volume quantity, the former being non-increasing, the latter being non-decreasing along the flow. In the case where S=Ric is the Ricci curvature of M, the result corresponds to Perelman's well-known reduced volume monotonicity for the Ricci flow. Some other examples are given in the second section of this article, the main examples and motivation for this work being List's extended Ricci flow system, the Ricci flow coupled with harmonic map heat flow and the mean curvature flow in Lorentzian manifolds with nonnegative sectional curvatures. With our approach, we find new monotonicity formulas for these flows.Comment: v2: final version (as published

    Crustal structure and rift flank uplift of the Adare Trough, Antarctica

    Get PDF
    The Adare Trough, located 100 km northeast of Cape Adare, Antarctica, represents the extinct third arm of a Tertiary spreading ridge between East and West Antarctica. It is characterized by pronounced asymmetric rift flanks elevated up to over 2 km above the trough's basement, accompanied by a large positive mantle Bouguer anomaly. On the basis of recently acquired seismic reflection and ship gravity data, we invert mantle Bouguer anomalies from the Adare Trough and obtain an unexpectedly large oceanic crustal thickness maximum of 9–10.5 km underneath the extinct ridge. A regional positive residual basement depth anomaly between 1 and 2.5 km in amplitude characterizes ocean crust from offshore Victoria Land to the Balleny Islands and north of Iselin Bank. The observations and models indicate that the mid/late Tertiary episode of slow spreading between East and West Antarctica was associated with a mantle thermal anomaly. The increasing crustal thickness toward the extinct ridge indicates that this thermal mantle anomaly may have increased in amplitude through time during the Adare spreading episode. This scenario is supported by a mantle convection model, which indicates the formation and strengthening of a major regional negative upper mantle density anomaly in the southwest Pacific in the last 50 million years. The total amount of post-26 Ma extension associated with Adare Trough normal faulting was about 7.5 km, in anomalously thick oceanic crust with a lithospheric effective elastic thickness (EET) between 3.5 and 5 km. This corresponds to an age between 3 and 5 million years based on a thermal boundary layer model and supports a scenario in which the Adare Trough formed soon after spreading between East and West Antarctica ceased, confined to relatively weak lithosphere with anomalously thick oceanic crust. There is little evidence for major subsequent structural activity in the Adare trough area from the available seismic data, indicating that this part of the West Antarctic Rift system became largely inactive in the early Miocene, with the exception of minor structural reactivation which is visible in the seismic data as offsets up to end of the early Pliocene

    Probing the environment of emerin by Enhanced ascorbate peroxidase 2 (APEX2)-mediated proximity labeling.

    Get PDF
    Emerin is one of the best characterized proteins of the inner nuclear membrane, but can also occur at the level of the endoplasmic reticulum. We now use enhanced ascorbate peroxidase 2 (APEX2) to probe the environment of emerin. APEX2 can be used as a genetic tag that produces short-lived yet highly reactive biotin species, allowing the modification of proteins that interact with or are in very close proximity to the tagged protein. Biotinylated proteins can be isolated using immobilized streptavidin and analyzed by mass spectrometry. As an alternative to the standard approach with a genetic fusion of APEX2 to emerin, we also used RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC), a method with improved specificity, where the peroxidase interacts with the protein of interest (i.e., emerin) only upon addition of rapamycin to the cells. We compare these different approaches, which, together, identify well-known interaction partners of emerin like lamin A and the lamina associated polypeptide 1 (LAP1), as well as novel proximity partners

    Unboundedness of adjacency matrices of locally finite graphs

    Full text link
    Given a locally finite simple graph so that its degree is not bounded, every self-adjoint realization of the adjacency matrix is unbounded from above. In this note we give an optimal condition to ensure it is also unbounded from below. We also consider the case of weighted graphs. We discuss the question of self-adjoint extensions and prove an optimal criterium.Comment: Typos corrected. Examples added. Cute drawings. Simplification of the main condition. Case of the weight tending to zero more discussed

    Asymptotics of Transmit Antenna Selection: Impact of Multiple Receive Antennas

    Full text link
    Consider a fading Gaussian MIMO channel with NtN_\mathrm{t} transmit and NrN_\mathrm{r} receive antennas. The transmitter selects LtL_\mathrm{t} antennas corresponding to the strongest channels. For this setup, we study the distribution of the input-output mutual information when NtN_\mathrm{t} grows large. We show that, for any NrN_\mathrm{r} and LtL_\mathrm{t}, the distribution of the input-output mutual information is accurately approximated by a Gaussian distribution whose mean grows large and whose variance converges to zero. Our analysis depicts that, in the large limit, the gap between the expectation of the mutual information and its corresponding upper bound, derived by applying Jensen's inequality, converges to a constant which only depends on NrN_\mathrm{r} and LtL_\mathrm{t}. The result extends the scope of channel hardening to the general case of antenna selection with multiple receive and selected transmit antennas. Although the analyses are given for the large-system limit, our numerical investigations indicate the robustness of the approximated distribution even when the number of antennas is not large.Comment: 6 pages, 4 figures, ICC 201

    The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus

    Get PDF
    We present observations of the molecular gas in the nuclear environment of three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of ~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over an area that is ~9 times smaller and column densities that are in average ~3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGN may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGN is dominated by intermediate-age/old stellar populations (with little or no on-going star formation), consistent with a late stage of evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication in ApJ Letter

    Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers

    Full text link
    We propose a field-theoretical approach to a polymer system immersed in an ideal mixture of clustering centers. The system contains several species of these clustering centers with different functionality, each of which connects a fixed number segments of the chain to each other. The field-theory is solved using the saddle point approximation and evaluated for dense polymer melts using the Random Phase Approximation. We find a short-ranged effective inter-segment interaction with strength dependent on the average segment density and discuss the structure factor within this approximation. We also determine the fractions of linkers of the different functionalities.Comment: 27 pages, 9 figures, accepted on Phys. Rev.
    • …
    corecore