320 research outputs found
Neutrino magnetohydrodynamics
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the
effects of the charged weak current on the electron-ion magnetohydrodynamic
fluid are taken into account. The model incorporates in a systematic way the
role of the Fermi neutrino weak force in magnetized plasmas. A fast
neutrino-driven short wavelengths instability associated with the magnetosonic
wave is derived. Such an instability should play a central role in strongly
magnetized plasma as occurs in supernovae, where dense neutrino beams also
exist. In addition, in the case of nonlinear or high frequency waves, the
neutrino coupling is shown to be responsible for breaking the frozen-in
magnetic field lines condition even in infinite conductivity plasmas.
Simplified and ideal NMHD assumptions were adopted and analyzed in detail
Microwave Spectroscopy
Contains reports on four research projects.United States Army Signal Corps (Contract DA36-039-sc-87376)Lincoln Laboratory (Purchase Order DDL B-00368)United States ArmyUnited States NavyUnited States Air Force (Contract AF19(604)-7400
Heat Shock Protein 70 Prevents both Tau Aggregation and the Inhibitory Effects of Preexisting Tau Aggregates on Fast Axonal Transport
Aggregation and accumulation of the microtubule-associated protein tau are associated with
cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus,
preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the
toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these
neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock
protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the
formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a
mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on
fast axonal transport, a critical process for neuronal function. When incubated with preformed tau
aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that
prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our
data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies
Study of intrinsic spin and orbital Hall effects in Pt based on a (6s, 6p, 5d) tight-binding model
We study the origin of the intrinsic spin Hall conductivity (SHC) and the
d-orbital Hall conductivity (OHC) in Pt based on a multiorbital tight-binding
model with spin-orbit interaction. We find that the SHC reaches 1000
\hbar/e\Omega cm when the resistivity \rho is smaller than ~10 \mu\Omega cm,
whereas it decreases to 300 \hbar/e\Omega cm when \rho ~ 100 \mu\Omega cm. In
addition, the OHC is still larger than the SHC. The origin of huge SHE and OHE
in Pt is the large ``effective magnetic flux'' that is induced by the
interorbital transition between d_{xy}- and d_{x2-y2}-orbitals with the aid of
the strong spin-orbit interaction.Comment: 5 page
Dietary intake of micronutrients and the risk of developing bladder cancer: results from the Belgian caseâcontrol study on bladder cancer risk
OBJECTIVE: We aimed to investigate the effect of dietary intake of micronutrients that are metabolized and excreted via the urinary tract on bladder cancer risk. METHODS: A semi-quantitative 322 item food frequency questionnaire (FFQ) was used to collect dietary data from 200 bladder cancer cases and 386 control subjects participating in the Belgian case-control study on bladder cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression adjusting for age, sex, smoking characteristics, occupational exposures, and energy intake. RESULTS: We observed a positive association between calcium intake and bladder cancer (OR: 1.77; 95% CI: 1.00-3.15; p-trend = 0.049) and increased odds, although not statistically significant, for highest tertile of phosphorus intake (OR: 1.82; 95% CI: 0.95-3.49; p-trend = 0.06). We identified possible modification of the effects of both calcium and phosphorus by level of magnesium intake. Increased odds of bladder cancer were also observed for participants with highest intake of phosphorus and lowest intake of vitamin D (OR: 4.25; 95% CI: 1.44-12.55) and among older participants with the highest intakes of calcium (OR: 1.90; 95% CI: 1.08-3.36) and phosphorus (OR: 2.02; 95% CI: 1.05-3.92). CONCLUSION: The positive associations we observed between bladder cancer and intake of calcium and phosphorus require confirmation by other studies. The balances between inter-related micronutrients also warrant further examination
Sex-based differences in functional brain activity during working memory in survivors of pediatric acute lymphoblastic leukemia
BACKGROUND: Long-term survivors of pediatric acute lymphoblastic leukemia are at elevated risk for neurocognitive deficits and corresponding brain dysfunction. This study examined sex-based differences in functional neuroimaging outcomes in acute lymphoblastic leukemia survivors treated with chemotherapy alone.
METHODS: Functional magnetic resonance imaging (fMRI) and neurocognitive testing were obtained in 123 survivors (46% male; median [min-max] ageâ=â14.2 years [8.3-26.5 years]; time since diagnosisâ=â7.7 years [5.1-12.5 years]) treated on the St. Jude Total XV treatment protocol. Participants performed the n-back working memory task in a 3âT scanner. Functional neuroimaging data were processed (realigned, slice time corrected, normalized, smoothed) and analyzed using statistical parametric mapping with contrasts for 1-back and 2-back conditions, which reflect varying degrees of working memory and task load. Group-level fMRI contrasts were stratified by sex and adjusted for age and methotrexate exposure. Statistical tests were 2-sided (Pâ\u3câ.05 statistical significance threshold).
RESULTS: Relative to males, female survivors exhibited less activation (ie, reduced blood oxygen dependent-level signals) in the right parietal operculum, supramarginal gyrus and inferior occipital gyrus, and bilateral superior frontal medial gyrus during increased working memory load (family-wise error-corrected Pâ=â.004 to .008, adjusting for age and methotrexate dose). Female survivors were slower to correctly respond to the 2-back condition than males (Pâ\u3câ.05), though there were no differences in overall accuracy. Performance accuracy was negatively correlated with fMRI activity in female survivors (Pearson\u27s râ=â-0.39 to -0.29, Pâ=â.001 to .02), but not in males.
CONCLUSIONS: These results suggest the working memory network is more impaired in female survivors than male survivors, which may contribute to ongoing functional deficits
Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative perturbation theory
We develop an analytical expression for the self-energy of the
infinite-dimensional Hubbard model that is correct in a number of different
limits. The approach represents a generalization of the iterative perturbation
theory to arbitrary fillings. In the weak-coupling regime perturbation theory
to second order in the interaction U is recovered. The theory is exact in the
atomic limit. The high-energy behavior of the self-energy up to order (1/E)**2
and thereby the first four moments of the spectral density are reproduced
correctly. Referring to a standard strong-coupling moment method, we analyze
the limit of strong U. Different modifications of the approach are discussed
and tested by comparing with the results of an exact diagonalization study.Comment: LaTeX, 14 pages, 5 ps figures included, title changed, references
updated, minor change
A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method
We have investigated the antiferromagnetic phase of the 2D, the 3D and the
extended Hubbard models on a bipartite cubic lattice by means of the Composite
Operator Method within a two-pole approximation. This approach yields a fully
self-consistent treatment of the antiferromagnetic state that respects the
symmetry properties of both the model and the algebra. The complete phase
diagram, as regards the antiferromagnetic and the paramagnetic phases, has been
drawn. We firstly reported, within a pole approximation, three kinds of
transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We
have also found a metal-insulator transition, driven by doping, within the
antiferromagnetic phase. This latter is restricted to a very small region near
half filling and has, in contrast to what has been found by similar approaches,
a finite critical Coulomb interaction as lower bound at half filling. Finally,
it is worth noting that our antiferromagnetic gap has two independent
components: one due to the antiferromagnetic correlations and another coming
from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.
- âŠ