8,580 research outputs found
Arbitrarily slow, non-quasistatic, isothermal transformations
For an overdamped colloidal particle diffusing in a fluid in a controllable,
virtual potential, we show that arbitrarily slow transformations, produced by
smooth deformations of a double-well potential, need not be reversible. The
arbitrarily slow transformations do need to be fast compared to the barrier
crossing time, but that time can be extremely long. We consider two types of
cyclic, isothermal transformations of a double-well potential. Both start and
end in the same equilibrium state, and both use the same basic operations---but
in different order. By measuring the work for finite cycle times and
extrapolating to infinite times, we found that one transformation required no
work, while the other required a finite amount of work, no matter how slowly it
was carried out. The difference traces back to the observation that when time
is reversed, the two protocols have different outcomes, when carried out
arbitrarily slowly. A recently derived formula relating work production to the
relative entropy of forward and backward path probabilities predicts the
observed work average.Comment: 6 pages, 6 figure
Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation
The D-dimensional cosmological model on the manifold describing the evolution of 2 Einsteinian factor spaces,
and , in the presence of multicomponent perfect fluid source is
considered. The barotropic equation of state for mass-energy densities and the
pressures of the components is assumed in each space. When the number of the
non Ricci-flat factor spaces and the number of the perfect fluid components are
both equal to 2, the Einstein equations for the model are reduced to the
generalized Emden-Fowler (second-order ordinary differential) equation, which
has been recently investigated by Zaitsev and Polyanin within discrete-group
analysis. Using the integrable classes of this equation one generates the
integrable cosmological models. The corresponding metrics are presented. The
method is demonstrated for the special model with Ricci-flat spaces
and the 2-component perfect fluid source.Comment: LaTeX file, no figure
On Quantization of Time-Dependent Systems with Constraints
The Dirac method of canonical quantization of theories with second class
constraints has to be modified if the constraints depend on time explicitly. A
solution of the problem was given by Gitman and Tyutin. In the present work we
propose an independent way to derive the rules of quantization for these
systems, starting from physical equivalent theory with trivial
non-stationarity.Comment: 4 page
Toda chains with type A_m Lie algebra for multidimensional m-component perfect fluid cosmology
We consider a D-dimensional cosmological model describing an evolution of
Ricci-flat factor spaces, M_1,...M_n (n > 2), in the presence of an m-component
perfect fluid source (n > m > 1). We find characteristic vectors, related to
the matter constants in the barotropic equations of state for fluid components
of all factor spaces.
We show that, in the case where we can interpret these vectors as the root
vectors of a Lie algebra of Cartan type A_m=sl(m+1,C), the model reduces to the
classical open m-body Toda chain.
Using an elegant technique by Anderson (J. Math. Phys. 37 (1996) 1349) for
solving this system, we integrate the Einstein equations for the model and
present the metric in a Kasner-like form.Comment: LaTeX, 2 ps figure
Quantization of (2+1)-spinning particles and bifermionic constraint problem
This work is a natural continuation of our recent study in quantizing
relativistic particles. There it was demonstrated that, by applying a
consistent quantization scheme to a classical model of a spinless relativistic
particle as well as to the Berezin-Marinov model of 3+1 Dirac particle, it is
possible to obtain a consistent relativistic quantum mechanics of such
particles. In the present article we apply a similar approach to the problem of
quantizing the massive 2+1 Dirac particle. However, we stress that such a
problem differs in a nontrivial way from the one in 3+1 dimensions. The point
is that in 2+1 dimensions each spin polarization describes different fermion
species. Technically this fact manifests itself through the presence of a
bifermionic constant and of a bifermionic first-class constraint. In
particular, this constraint does not admit a conjugate gauge condition at the
classical level. The quantization problem in 2+1 dimensions is also interesting
from the physical viewpoint (e.g. anyons). In order to quantize the model, we
first derive a classical formulation in an effective phase space, restricted by
constraints and gauges. Then the condition of preservation of the classical
symmetries allows us to realize the operator algebra in an unambiguous way and
construct an appropriate Hilbert space. The physical sector of the constructed
quantum mechanics contains spin-1/2 particles and antiparticles without an
infinite number of negative-energy levels, and exactly reproduces the
one-particle sector of the 2+1 quantum theory of a spinor field.Comment: LaTex, 24 pages, no figure
Quantum spinor field in the FRW universe with a constant electromagnetic background
The article is a natural continuation of our paper {\em Quantum scalar field
in FRW Universe with constant electromagnetic background}, Int. J. Mod. Phys.
{\bf A12}, 4837 (1997). We generalize the latter consideration to the case of
massive spinor field, which is placed in FRW Universe of special type with a
constant electromagnetic field. To this end special sets of exact solutions of
Dirac equation in the background under consideration are constructed and
classified. Using these solutions representations for out-in, in-in, and
out-out spinor Green functions are explicitly constructed as proper-time
integrals over the corresponding contours in complex proper-time plane. The
vacuum-to-vacuum transition amplitude and number of created particles are found
and vacuum instability is discussed. The mean values of the current and
energy-momentum tensor are evaluated, and different approximations for them are
presented. The back reaction related to particle creation and to the
polarization of the unstable vacuum is estimated in different regimes.Comment: 36 pages, LaTex fil
Coherent states of non-relativistic electron in magnetic-solenoid field
We construct coherent states of a nonrelativistic electron in the
magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field
and a collinear uniform magnetic field. In the problem under consideration
there are two kind of coherent states, the first kind corresponds to classical
trajectories which embrace the solenoid and the second one to trajectories
which do not. Mean coordinates in the constructed coherent states are moving
along classical trajectories, the coherent states maintain their form under the
time evolution, and represent a complete set of functions, which can be useful
in semi classical calculations. In the absence of the Aharonov-Bohm filed these
states are reduced to the well-known in the case of uniform magnetic field
Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures
adde
On the reduction of the degree of linear differential operators
Let L be a linear differential operator with coefficients in some
differential field k of characteristic zero with algebraically closed field of
constants. Let k^a be the algebraic closure of k. For a solution y, Ly=0, we
determine the linear differential operator of minimal degree M and coefficients
in k^a, such that My=0. This result is then applied to some Picard-Fuchs
equations which appear in the study of perturbations of plane polynomial vector
fields of Lotka-Volterra type
- …