4,592 research outputs found

    "Propeller" Regime of Disk Accretion to Rapidly Rotating Stars

    Full text link
    We present results of axisymmetic magnetohydrodynamic simulations of the interaction of a rapidly-rotating, magnetized star with an accretion disk. The disk is considered to have a finite viscosity and magnetic diffusivity. The main parameters of the system are the star's angular velocity and magnetic moment, and the disk's viscosity, diffusivity. We focus on the "propeller" regime where the inner radius of the disk is larger than the corotation radius. Two types of magnetohydrodynamic flows have been found as a result of simulations: "weak" and "strong" propellers. The strong propeller is characterized by a powerful disk wind and a collimated magnetically dominated outflow or jet from the star. The weak propeller have only weak outflows. We investigated the time-averaged characteristics of the interaction between the main elements of the system, the star, the disk, the wind from the disk, and the jet. Rates of exchange of mass and angular momentum between the elements of the system are derived as a function of the main parameters. The propeller mechanism may be responsible for the fast spinning-down of the classical T Tauri stars in the initial stages of their evolution, and for the spinning-down of accreting millisecond pulsars.Comment: 18 pages, 16 figures, ApJ (accepted), added references, corrected typos; see animation at http://astrosun2.astro.cornell.edu/us-rus/disk_prop.ht

    MHD simulations of disk-star interaction

    Full text link
    We discuss a number of topics relevant to disk-magnetosphere interaction and how numerical simulations illuminate them. The topics include: (1) disk-magnetosphere interaction and the problem of disk-locking; (2) the wind problem; (3) structure of the magnetospheric flow, hot spots at the star's surface, and the inner disk region; (4) modeling of spectra from 3D funnel streams; (5) accretion to a star with a complex magnetic field; (6) accretion through 3D instabilities; (7) magnetospheric gap and survival of protoplanets. Results of both 2D and 3D simulations are discussed.Comment: 12 pages, 10 figures, Star-Disk Interaction in Young Stars, Proceedings of the International Astronomical Union, IAU Symposium, Volume 243. See animations at http://astro.cornell.edu/~romanova/projects.htm and at http://astro.cornell.edu/us-rus

    Wave Excitation in Disks Around Rotating Magnetic Stars

    Full text link
    The accretion disk around a rotating magnetic star (neutron star, white dwarf or T Tauri star) is subjected to periodic vertical magnetic forces from the star, with the forcing frequency equal to the stellar spin frequency or twice the spin frequency. This gives rise bending waves in the disk that may influence the variabilities of the system. We study the excitation, propagation and dissipation of these waves using a hydrodynamical model coupled with a generic model description of the magnetic forces. The m=1m=1 bending waves are excited at the Lindblad/vertical resonance, and propagate either to larger radii or inward toward the corotation resonance where dissipation takes place. While the resonant torque is negligible compared to the accretion torque, the wave nevertheless may reach appreciable amplitude and can cause or modulate flux variabilities from the system. We discuss applications of our result to the observed quasi-periodic oscillations from various systems, in particular neutron star low-mass X-ray binaries.Comment: Small changes/clarifications. To be published in ApJ, Aug.20,2008 issu

    The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star

    Full text link
    The propeller regime of disk accretion to a rapidly rotating magnetized star is investigated here for the first time by axisymmetric 2.5D magnetohydrodynamic simulations. An expanded, closed magnetosphere forms in which the magnetic field is predominantly toroidal. A smaller fraction of the star's poloidal magnetic flux inflates vertically, forming a magnetically dominated tower. Matter accumulates in the equatorial region outside magnetosphere and accretes to the star quasi-periodically through elongated funnel streams which cause the magnetic field to reconnect. The star spins-down owing to the interaction of the closed magnetosphere with the disk. For the considered conditions, the spin-down torque varies with the angular velocity of the star omega* as omega*^1.3 for fixed mass accretion rate. The propeller stage may be important in the evolution of X-ray pulsars, cataclysmic variables and young stars. In particular, it may explain the present slow rotation of the classical T Tauri stars.Comment: 5 pages with 4 figures, LaTeX, macros: emulapj.sty, avi movies are available at http://www.astro.cornell.edu/us-russia/disk_prop.ht

    On the rotational dynamics of magnetically threaded disks around neutron stars

    Get PDF
    We investigate the rotational dynamics of disk accretion around a strongly magnetized neutron star with an aligned dipole field. The magnetospheric field is assumed to thread the disk plasma both inside and outside the corotation radius. As a result of disk-star interaction, the magnetic torque on the disk affects the structure of accretion flow to yield the observed spin- up or spin- down rates for a source of given fastness, magnetic field strength, and mass accretion rate. Within the model we obtain a prescription for the dynamical viscosity of such magnetically modified solutions for a Keplerian disk. We then use this prescription to find a model solution for the rotation rate profile throughout the entire disk, including the non-Keplerian inner disk. We find that the non-Keplerian angular velocity transition region is not necessarily narrow for a source of given spin state. The boundary layer approximation, as in the standard magnetically threaded disk model, holds only in the case of dynamical viscosity decreasing all the way to the innermost edge of the disk. These results are applied to several observed disk-fed X-ray pulsars that have exhibited quasi-periodic oscillations (QPOs). The QPO frequencies provide a constraint on the fastness parameter and enable one to determine uniquely the width of the angular velocity transition zone for each source within model assumptions. We discuss the implications of these results on the value of the critical fastness parameter for a magnetized star in spin equilibrium. Applications of our model are also made with relevant parameters from recent numerical simulations of quasi-stationary disk - magnetized star interactions

    Warping and Precession of Accretion Disks Around Magnetic Stars: Nonlinear Evolution

    Full text link
    The inner region of the accretion disk around a magnetized star (T Tauri star, white dwarf or neutron star) is subjected to magnetic torques that induce warping and precession of the disk. These torques arise from the interaction between the stellar field and the induced electric currents in the disk. We carry out numerical simulations of the nonlinear evolution of warped, viscous accretion disks driven by the magnetic torques. We show that the disk can develop into a highly warped steady state in which the disk attains a fixed (warped) shape and precesses rigidly. The warp is most pronounced at the disk inner radius (near the magnetosphere boundary). As the system parameters (such as accretion rate) change, the disk can switch between a completely flat state (warping stable) and a highly warped state. The precession of warped disks may be responsible for a variety of quasi-periodic oscillations or radiation flux variabilities observed in many different systems, including young stellar objects and X-ray binaries.Comment: 16 pages, 7 figures; extended parameter searches, changes in discussion; accepted for publication in Ap

    Warping of Accretion Disks with Magnetically Driven Outflows: A Possible Origin for Jet Precession

    Full text link
    Current theoretical models for the outflows/jets from AGN, X-ray binaries and young stellar objects involve large-scale magnetic fields threading an underlying accretion disk. We suggest that such a disk is subjected to warping instability and retrograde precession driven by magnetic torques associated with the outflow. The growth timescale for the disk warp and the precession period are of order the radial infall time of the disk. These effects may be relevant to jet precession and other variabilities observed in many systems.Comment: 4 pages with 2 figures. ApJL in pres

    Force-Free Models of Magnetically Linked Star-Disk Systems

    Full text link
    Disk accretion onto a magnetized star occurs in a variety of astrophysical contexts, from young stars to X-ray pulsars. The magnetohydrodynamic interaction between the stellar field and the accreting matter can have a strong effect on the disk structure, the transfer of mass and angular momentum between the disk and the star, and the production of bipolar outflows, e.g., plasma jets. We study a key element of this interaction - the time evolution of the magnetic field configuration brought about by the relative rotation between the disk and the star - using simplified, largely semianalytic, models. We first discuss the rapid inflation and opening up of the magnetic field lines in the corona above the accretion disk, which is caused by the differential rotation twisting. Then we consider additional physical effects that tend to limit this expansion, such as the effect of plasma inertia and the possibility of reconnection in the disk's corona, the latter possibly leading to repeated cycles in the evolution. We also derive the condition for the existence of a steady state for a resistive disk and conclude that a steady state configuration is not realistically possible. Finally, we generalize our analysis of the opening of magnetic field lines by using a non-self-similar numerical model that applies to an arbitrarily rotating (e.g. keplerian) disk.Comment: 75 pages, 22 figures, 2 tables. Submitted to Astrophysical Journa

    Three-dimensional Simulations of Disk Accretion to an Inclined Dipole: I. Magnetospheric Flow at Different Theta

    Full text link
    We present results of fully three-dimensional MHD simulations of disk accretion to a rotating magnetized star with its dipole moment inclined at an angle Theta to the rotation axis of the disk. We observed that matter accretes from the disk to a star in two or several streams depending on Theta. Streams may precess around the star at small Theta. The inner regions of the disk are warped. The warping is due to the tendency of matter to co-rotate with inclined magnetosphere. The accreting matter brings positive angular momentum to the (slowly rotating) star tending to spin it up. The corresponding torque N_z depends only weakly on Theta. The angular momentum flux to the star is transported predominantly by the magnetic field; the matter component contributes < 1 % of the total flux. Results of simulations are important for understanding the nature of classical T Tauri stars, cataclysmic variables, and X-ray pulsars.Comment: 26 pages, 22 figures, LaTeX, macros: emulapj.sty, avi simulations are available at http://www.astro.cornell.edu/us-rus/inclined.ht

    Concurrent Acquisition of a Single Nucleotide Polymorphism in Diverse Influenza H5N1 Clade 2.2 Sub-clades

    Get PDF
    Highly pathogenic Influenza A H5N1 was first identified in Guangdong Province in 1996, followed by human cases in Hong Kong in 1997 1,2. The number of confirmed human cases now exceeds 300 and the associated Case Fatality Rate exceeds 60% 3. The genetic diversity of the serotype continues to increase. Four distinct clades or sub-clades have been linked to human cases 4-7. The gradual genetic changes identified in the sub-clades have been attributed to copy errors by viral encoded polymerases that lack an editing function, thereby resulting in antigenic drift 8. We report here the concurrent acquisition of the same polymorphism by multiple, genetically distinct, clade 2.2 sub-clades in Egypt, Russia, Kuwait, and Ghana. These changes are not easily explained by the current theory of &#x201c;random mutation&#x201d; through copy error, and are more easily explained by recombination with a common source. The recombination role is further supported by the high fidelity replication in swine influenza 9 and aggregation of single nucleotide polymorphisms in H5N1 clade 2.2 hemagglutinin 10
    • …
    corecore